Skip to main content

Advertisement

Log in

Induction of Neuronal Mitophagy in Acute Spinal Cord Injury in Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Autophagy and up-regulation of autophagy-associated proteins microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 have been shown to occur in spinal cord injury (SCI). Bcl-2/E1B-19 K-interacting protein 3 (BNIP3) and Nip-like protein X (NIX, also known as BNIP3L) are mitochondrial BH3-only proteins that are implicated in mitophagy. In this study, we show that mitophagy is activated in the injured neurons, and hypoxia-inducible proteins BNIP3, NIX, and p53 are upregulated after SCI. Numerous autophagosomes containing damaged mitochondria (mitophagosomes) were found in the injured neurons 24 h after SCI in rats by transmission electron microscopy; mitophagy, therefore, had occurred. Hypoxia-inducible proteins BNIP3, NIX, and p53 were upregulated in spinal cord neurons in both a rat model of SCI and cultured primary spinal neurons exposed to hypoxia. BNIP3 and NIX were transcriptionally regulated mainly by hypoxia-inducible factor-1α as well as p53 in cultured spinal cord neurons. This study provides direct morphological and biochemical evidence for mitophagy in the damaged neural tissue after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204

    PubMed  CAS  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    Article  PubMed  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  PubMed  CAS  Google Scholar 

  • Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16:515–523

    Article  PubMed  CAS  Google Scholar 

  • Byrnes KR, Stoica BA, Fricke S, Di GS, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977–2992

    Article  PubMed  Google Scholar 

  • Chen HC, Fong TH, Hsu PW, Chiu WT (2012a) Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion, anti-inflammation, and neuroprotection. J Surg Res 179(1):e203-10

    PubMed  Google Scholar 

  • Chen HC, Fong TH, Lee AW, Chiu WT (2012b) Autophagy is activated in injured neurons and inhibited by methylprednisolone after experimental spinal cord injury. Spine (Phila Pa 1976) 37:470–475

    Article  Google Scholar 

  • Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC (2008) Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 4:88–90

    PubMed  CAS  Google Scholar 

  • Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB, Dorn GW II, Yin XM (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285:27879–27890

    Article  PubMed  CAS  Google Scholar 

  • Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2005) Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J Neurotrauma 22:750–762

    Article  PubMed  Google Scholar 

  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102:8204–8209

    Article  PubMed  CAS  Google Scholar 

  • Feng X, Liu X, Zhang W, Xiao W (2011) p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J 30:3397–3415

    Article  PubMed  CAS  Google Scholar 

  • Grossman SD, Wolfe BB, Yasuda RP, Wrathall JR (1999) Alterations in AMPA receptor subunit expression after experimental spinal cord contusion injury. J Neurosci 19:5711–5720

    PubMed  CAS  Google Scholar 

  • Jian B, Yang S, Chen D, Zou L, Chatham JC, Chaudry I, Raju R (2011) Aging influences cardiac mitochondrial gene expression and cardiovascular function following hemorrhage injury. Mol Med 17:542–549

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E (2011) Induction of autophagy and autophagic cell death in damaged neural tissue after acute spinal cord injury in mice. Spine (Phila Pa 1976) 36:E1427–E1434

    Article  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, Bamber BA, Bassham DC, Bergamini E, Bi X, Biard-Piechaczyk M, Blum JS, Bredesen DE, Brodsky JL, Brumell JH, Brunk UT, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin LS, Choi A, Chu CT, Chung J, Clarke PG, Clark RS, Clarke SG, Clave C, Cleveland JL, Codogno P, Colombo MI, Coto-Montes A, Cregg JM, Cuervo AM, Debnath J, Demarchi F, Dennis PB, Dennis PA, Deretic V, Devenish RJ, Di SF, Dice JF, Difiglia M, Dinesh-Kumar S, Distelhorst CW, Djavaheri-Mergny M, Dorsey FC, Droge W, Dron M, Dunn WA Jr, Duszenko M, Eissa NT, Elazar Z, Esclatine A, Eskelinen EL, Fesus L, Finley KD, Fuentes JM, Fueyo J, Fujisaki K, Galliot B, Gao FB, Gewirtz DA, Gibson SB, Gohla A, Goldberg AL, Gonzalez R, Gonzalez-Estevez C, Gorski S, Gottlieb RA, Haussinger D, He YW, Heidenreich K, Hill JA, Hoyer-Hansen M, Hu X, Huang WP, Iwasaki A, Jaattela M, Jackson WT, Jiang X, Jin S, Johansen T, Jung JU, Kadowaki M, Kang C, Kelekar A, Kessel DH, Kiel JA, Kim HP, Kimchi A, Kinsella TJ, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovacs AL, Kroemer G, Kuan CY, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei HY, Lenardo MJ, Levine B, Lieberman A, Lim KL, Lin FC, Liou W, Liu LF, Lopez-Berestein G, Lopez-Otin C, Lu B, Macleod KF, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer AJ, Melendez A, Michels P, Miotto G, Mistiaen WP, Mizushima N, Mograbi B, Monastyrska I, Moore MN, Moreira PI, Moriyasu Y, Motyl T, Munz C, Murphy LO, Naqvi NI, Neufeld TP, Nishino I, Nixon RA, Noda T, Nurnberg B, Ogawa M, Oleinick NL, Olsen LJ, Ozpolat B, Paglin S, Palmer GE, Papassideri I, Parkes M, Perlmutter DH, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein DC, Ryan KM, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen PO, Seleverstov O, Settleman J, Shacka JJ, Shapiro IM, Sibirny A, Silva-Zacarin EC, Simon HU, Simone C, Simonsen A, Smith MA, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug PE, Subauste CS, Sugimoto S, Sulzer D, Suzuki T, Swanson MS, Tabas I, Takeshita F, Talbot NJ, Talloczy Z, Tanaka K, Tanaka K, Tanida I, Taylor GS, Taylor JP, Terman A, Tettamanti G, Thompson CB, Thumm M, Tolkovsky AM, Tooze SA, Truant R, Tumanovska LV, Uchiyama Y, Ueno T, Uzcategui NL, der Klei I v, Vaquero EC, Vellai T, Vogel MW, Wang HG, Webster P, Wiley JW, Xi Z, Xiao G, Yahalom J, Yang JM, Yap G, Yin XM, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter RL (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    Google Scholar 

  • Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17:86–92

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, Huang L, Xue P, Li B, Wang X, Jin H, Wang J, Yang F, Liu P, Zhu Y, Sui S, Chen Q (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185

    Article  PubMed  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R, Kroemer G (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8:1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22:181–185

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    Article  PubMed  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    Article  PubMed  Google Scholar 

  • Novak I, Dikic I (2011) Autophagy receptors in developmental clearance of mitochondria. Autophagy 7:301–303

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W (2008) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 32:16–25

    Article  PubMed  CAS  Google Scholar 

  • Quinsay MN, Thomas RL, Lee Y, Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6:855–862

    Article  PubMed  CAS  Google Scholar 

  • Rami A, Langhagen A, Steiger S (2008) Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis 29:132–141

    Article  PubMed  CAS  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231

    Article  PubMed  CAS  Google Scholar 

  • Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson AB (2011) Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18:721–731

    Article  PubMed  CAS  Google Scholar 

  • Sadasivan S, Dunn WA Jr, Hayes RL, Wang KK (2008) Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury. Biochem Biophys Res Commun 373:478–481

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009) Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16:46–56

    Article  PubMed  CAS  Google Scholar 

  • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, Kundu M, Opferman JT, Cleveland JL, Miller JL, Ney PA (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012) Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma 29:946–956

    Article  PubMed  Google Scholar 

  • Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A, Kroemer G (2008) p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 7:3006–3011

    Article  PubMed  CAS  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  PubMed  CAS  Google Scholar 

  • Walker CL, Walker MJ, Liu NK, Risberg EC, Gao X, Chen J, Xu XM (2012) Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE 7:e30012

    Article  PubMed  CAS  Google Scholar 

  • Webster KA, Graham RM, Bishopric NH (2005) BNip3 and signal-specific programmed death in the heart. J Mol Cell Cardiol 38:35–45

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Yun H, Yang Y, Jing B, Feng C, Song-bin F (2006) Upregulation of BNIP3 promotes apoptosis of lung cancer cells that were induced by p53. Biochem Biophys Res Commun 346:501–507

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhang Z, Sandhu G, Ma X, Yang X, Geiger JD, Kong J (2007a) Evidence of oxidative stress-induced BNIP3 expression in amyloid beta neurotoxicity. Brain Res 1138:221–230

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yang X, Zhang S, Ma X, Kong J (2007b) BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia. Stroke 38:1606–1613

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    Article  PubMed  CAS  Google Scholar 

  • Zhang XD, Wang Y, Wang Y, Zhang X, Han R, Wu JC, Liang ZQ, Gu ZL, Han F, Fukunaga K, Qin ZH (2009) p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum. Autophagy 5:339–350

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Shi R, Weng J, Xu X, Li XM, Gao TM, Kong J (2011) The proapoptotic member of the Bcl-2 family Bcl-2/E1B–19 K-interacting protein 3 is a mediator of caspase-independent neuronal death in excitotoxicity. FEBS J 278:134–142

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the National Natural Science Foundation of China (81070980 to Z. Z.), CIHR and Canadian Stroke Network. We would like to thank Zhongfen Tao for technical assistance of electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiming Kong or Zhengfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Li, M., Ni, B. et al. Induction of Neuronal Mitophagy in Acute Spinal Cord Injury in Rats. Neurotox Res 24, 512–522 (2013). https://doi.org/10.1007/s12640-013-9397-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9397-0

Keywords

Navigation