Skip to main content

Advertisement

Log in

Zinc and the ERK Kinases in the Developing Brain

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

This article reviews evidence in support of the hypothesis that impaired activation of the extracellular signal-regulated kinases (ERK1/2) contributes to the disruptions in neurodevelopment associated with zinc deficiency. These kinases are implicated in major events of brain development, including proliferation of progenitor cells, neuronal migration, differentiation, and apoptotic cell death. In humans, mutations in ERK1/2 genes have been associated with neuro-cardio-facial-cutaneous syndromes. ERK1/2 deficits in mice have revealed impaired neurogenesis, altered cellularity, and behavioral abnormalities. Zinc is an important modulator of ERK1/2 signaling. Conditions of both zinc deficiency and excess affect ERK1/2 phosphorylation in fetal and adult brains. Hypophosphorylation of ERK1/2, associated with decreased zinc availability in cell cultures, is accompanied by decreased proliferation and an arrest of the cell cycle at the G0/G1 phase. Zinc and ERK1/2 have both been shown to modulate neural progenitor cell proliferation and cell death in the brain. Furthermore, behavioral deficits resulting from developmental zinc deficiency are similar to those observed in mice with decreased ERK1/2 signaling. For example, impaired performance on behavioral tests of learning and memory; such as the Morris water maze, fear conditioning, and the radial arm maze; has been reported in both animals exposed to developmental zinc deficiency and transgenic mice with decreased ERK signaling. Future study should clarify the mechanisms through which a dysregulation of ERK1/2 may contribute to altered brain development associated with dietary zinc deficiency and with conditions that limit zinc availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADHD:

Attention deficit-hyperactivity disorder

BDNF:

Brain-derived neurotrophic factor

CREB:

cAMP-responsive element binding protein

Csk:

C-terminal Src kinase

E:

Embryonic day

ERK:

Extracellular signal-regulated kinases

GFAP:

Glial fibrillary acidic protein

GPR39:

G-protein coupled receptor 39

JNK:

c-Jun N-terminal kinases

MAPK:

Mitogen activated protein kinase

MEK:

Mitogen activated ERK kinase

MMP:

Matrix metalloproteinases

NCFC:

Neuro-cardio-facial-cutaneous syndromes

NMDAR:

N-methyl-d-aspartate sensitive glutamate receptor

P:

Postnatal day

RCN:

Rat cortical neurons

SFK:

Src family kinases

Sos:

Son of sevenless

TrkB:

Tropomyosin-receptor-kinase B

References

  • Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotoxic Res 17:1–14

    CAS  Google Scholar 

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    PubMed  CAS  Google Scholar 

  • Aimo L, Cherr GN, Oteiza PI (2010a) Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation. Free Radic Biol Med 48:1577–1587

    PubMed  CAS  Google Scholar 

  • Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010b) Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-kappaB and NFAT in fetal brain. J Nutr Biochem 21:1069–1075

    PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Mohammadi MR, Khademi M (2004) Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: a double blind and randomized trial [ISRCTN64132371]. BMC Psychiatry 4:9

    PubMed  Google Scholar 

  • Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA 96:12866–12869

    PubMed  CAS  Google Scholar 

  • Amani R, Saeidi S, Nazari Z, Nematpour S (2010) Correlation between dietary zinc intakes and its serum levels with depression scales in young female students. Biol Trace Elem Res 137:150–158

    PubMed  CAS  Google Scholar 

  • Andrews RC (1992) An update of the zinc deficiency theory of schizophrenia. Identification of the sex determining system as the site of action of reproductive zinc deficiency. Med Hypotheses 38:284–291

    PubMed  CAS  Google Scholar 

  • Apgar J (1968) Effect of zinc deficiency on parturition in the rat. Am J Physiol 215:160–163

    PubMed  CAS  Google Scholar 

  • Arnold LE, DiSilvestro RA (2005) Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15:619–627

    PubMed  Google Scholar 

  • Arnold LE, Bozzolo H, Hollway J, Cook A, DiSilvestro RA, Bozzolo DR, Crowl L, Ramadan Y, Williams C (2005) Serum zinc correlates with parent- and teacher- rated inattention in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 15:628–636

    PubMed  Google Scholar 

  • Arnold LE, Disilvestro RA, Bozzolo D, Bozzolo H, Crowl L, Fernandez S, Ramadan Y, Thompson S, Mo X, Abdel-Rasoul M, Joseph E (2011) Zinc for attention-deficit/hyperactivity disorder: placebo-controlled double-blind pilot trial alone and combined with amphetamine. J Child Adolesc Psychopharmacol 21:1–19

    PubMed  CAS  Google Scholar 

  • Azman MS, Wan Saudi WS, Ilhami M, Mutalib MS, Rahman MT (2009) Zinc intake during pregnancy increases the proliferation at ventricular zone of the newborn brain. Nutr Neurosci 12:9–12

    PubMed  CAS  Google Scholar 

  • Bentley ME, Caulfield LE, Ram M, Santizo MC, Hurtado E, Rivera JA, Ruel MT, Brown KH (1997) Zinc supplementation affects the activity patterns of rural Guatemalan infants. J Nutr 127:1333–1338

    PubMed  CAS  Google Scholar 

  • Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29:2890–2901

    PubMed  CAS  Google Scholar 

  • Bhutta ZA, Black RE, Brown KH, Gardner JM, Gore S, Hidayat A, Khatun F, Martorell R, Ninh NX, Penny ME, Rosado JL, Roy SK, Ruel M, Sazawal S, Shankar A (1999) Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. Zinc Investigators’ Collaborative Group. J Pediatr 135:689–697

    PubMed  CAS  Google Scholar 

  • Bilici M, Yildirim F, Kandil S, Bekaroglu M, Yildirmis S, Deger O, Ulgen M, Yildiran A, Aksu H (2004) Double-blind, placebo-controlled study of zinc sulfate in the treatment of attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 28:181–190

    PubMed  CAS  Google Scholar 

  • Black MM (2003) The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr 133:1473S–1476S

    PubMed  CAS  Google Scholar 

  • Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675

    PubMed  CAS  Google Scholar 

  • Brenton DP, Jackson MJ, Young A (1981) Two pregnancies in a patient with acrodermatitis enteropathica treated with zinc sulphate. Lancet 2:500–502

    PubMed  CAS  Google Scholar 

  • Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 130:1367S–1373S

    PubMed  CAS  Google Scholar 

  • Brown KH, Peerson JM, Rivera J, Allen LH (2002) Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am J Clin Nutr 75:1062–1071

    PubMed  CAS  Google Scholar 

  • Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J (1999) Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 18:664–674

    PubMed  CAS  Google Scholar 

  • Charest DL, Mordret G, Harder KW, Jirik F, Pelech SL (1993) Molecular cloning, expression, and characterization of the human mitogen-activated protein kinase p44erk1. Mol Cell Biol 13:4679–4690

    PubMed  CAS  Google Scholar 

  • Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    PubMed  CAS  Google Scholar 

  • Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K (2008) IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56:791–800

    PubMed  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lonnerdal B (2005) Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood. J Neurochem 94:510–519

    PubMed  CAS  Google Scholar 

  • Cieslik K, Sowa-Kucma M, Ossowska G, Legutko B, Wolak M, Opoka W, Nowak G (2011) Chronic unpredictable stress-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) gene expression is antagonized by zinc treatment. Pharmacol Rep 63:537–543

    PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    PubMed  CAS  Google Scholar 

  • Cole TB, Martyanova A, Palmiter RD (2001) Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res 891:253–265

    PubMed  CAS  Google Scholar 

  • Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    PubMed  CAS  Google Scholar 

  • Corona C, Masciopinto F, Silvestri E, Viscovo AD, Lattanzio R, Sorda RL, Ciavardelli D, Goglia F, Piantelli M, Canzoniero LM, Sensi SL (2010) Dietary zinc supplementation of 3×Tg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis 1:e91

    PubMed  CAS  Google Scholar 

  • Coyle P, Tran N, Fung JN, Summers BL, Rofe AM (2009) Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy. Behav Brain Res 197:210–218

    PubMed  CAS  Google Scholar 

  • Creson TK, Hao Y, Engel S, Shen Y, Hamidi A, Zhuo M, Manji HK, Chen G (2009) The anterior cingulate ERK pathway contributes to regulation of behavioral excitement and hedonic activity. Bipolar Disord 11:339–350

    PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    PubMed  CAS  Google Scholar 

  • DiGirolamo AM, Ramirez-Zea M, Wang M, Flores-Ayala R, Martorell R, Neufeld LM, Ramakrishnan U, Sellen D, Black MM, Stein AD (2010) Randomized trial of the effect of zinc supplementation on the mental health of school-age children in Guatemala. Am J Clin Nutr 92:1241–1250

    PubMed  CAS  Google Scholar 

  • Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK (2003) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 278:50142–50150

    PubMed  CAS  Google Scholar 

  • Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH (1983) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. I. Impaired acquisition of granule cells. Brain Res 271:217–226

    PubMed  CAS  Google Scholar 

  • Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH (1984a) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. II. Impaired maturation of Purkinje cells. Brain Res 318:11–20

    PubMed  CAS  Google Scholar 

  • Dvergsten CL, Johnson LA, Sandstead HH (1984b) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. III. Impaired dendritic differentiation of basket and stellate cells. Brain Res 318:21–26

    PubMed  CAS  Google Scholar 

  • Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G (2009) The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14:448–461

    PubMed  CAS  Google Scholar 

  • Ferguson SM, Fasano S, Yang P, Brambilla R, Robinson TE (2006) Knockout of ERK1 enhances cocaine-evoked immediate early gene expression and behavioral plasticity. Neuropsychopharmacology 31:2660–2668

    PubMed  CAS  Google Scholar 

  • Franco JL, Posser T, Brocardo PS, Trevisan R, Uliano-Silva M, Gabilan NH, Santos AR, Leal RB, Rodrigues AL, Farina M, Dafre AL (2008) Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc in rats. Behav Brain Res 188:316–323

    PubMed  CAS  Google Scholar 

  • Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH (2011) The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci 31:843–850

    PubMed  CAS  Google Scholar 

  • Gao HL, Zheng W, Xin N, Chi ZH, Wang ZY, Chen J (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotoxic Res 16:416–425

    CAS  Google Scholar 

  • Gao HL, Xu H, Xin N, Zheng W, Chi ZH, Wang ZY (2011) Disruption of the CaMKII/CREB signaling is associated with zinc deficiency-induced learning and memory impairments. Neurotoxic Res 19:584–591

    CAS  Google Scholar 

  • Gardner JM, Powell CA, Baker-Henningham H, Walker SP, Cole TJ, Grantham-McGregor SM (2005) Zinc supplementation and psychosocial stimulation: effects on the development of undernourished Jamaican children. Am J Clin Nutr 82:399–405

    PubMed  CAS  Google Scholar 

  • Golub MS, Keen CL, Gershwin ME, Hendrickx AG (1995) Developmental zinc deficiency and behavior. J Nutr 125:2263S–2271S

    PubMed  CAS  Google Scholar 

  • Golub MS, Takeuchi PT, Keen CL, Hendrickx AG, Gershwin ME (1996) Activity and attention in zinc-deprived adolescent monkeys. Am J Clin Nutr 64:908–915

    PubMed  CAS  Google Scholar 

  • Golub MS, Keen CL, Gershwin ME (2000) Moderate Zn–Fe deprivation influences behavior but not growth in adolescent Rhesus monkeys. J Nutr 130:354S–357S

    PubMed  CAS  Google Scholar 

  • Gonzalez FA, Raden DL, Davis RJ (1991) Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 266:22159–22163

    PubMed  CAS  Google Scholar 

  • Halas ES, Sandstead HH (1975) Some effects of prenatal zinc deficiency on behavior of the adult rat. Pediatr Res 9:94–97

    PubMed  CAS  Google Scholar 

  • Halas ES, Hunt CD, Eberhardt MJ (1986) Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav 37:451–458

    PubMed  CAS  Google Scholar 

  • Hamadani JD, Fuchs GJ, Osendarp SJ, Khatun F, Huda SN, Grantham-McGregor SM (2001) Randomized controlled trial of the effect of zinc supplementation on the mental development of Bangladeshi infants. Am J Clin Nutr 74:381–386

    PubMed  CAS  Google Scholar 

  • Hamadani JD, Fuchs GJ, Osendarp SJ, Huda SN, Grantham-McGregor SM (2002) Zinc supplementation during pregnancy and effects on mental development and behaviour of infants: a follow-up study. Lancet 360:290–294

    PubMed  CAS  Google Scholar 

  • Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    PubMed  CAS  Google Scholar 

  • He K, Aizenman E (2010) ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity. J Neurochem 114:452–461

    PubMed  CAS  Google Scholar 

  • Heffron DS, Landreth GE, Samuels IS, Mandell JW (2009) Brain-specific deletion of extracellular signal-regulated kinase 2 mitogen-activated protein kinase leads to aberrant cortical collagen deposition. Am J Pathol 175:2586–2599

    PubMed  CAS  Google Scholar 

  • Holst B, Egerod KL, Schild E, Vickers SP, Cheetham S, Gerlach LO, Storjohann L, Stidsen CE, Jones R, Beck-Sickinger AG, Schwartz TW (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20

    PubMed  CAS  Google Scholar 

  • Huang YZ, Pan E, Xiong ZQ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57:546–558

    PubMed  CAS  Google Scholar 

  • Hubbs-Tait L, Kennedy TS, Droke EA, Belanger DM, Parker JR (2007) Zinc, iron, and lead: relations to head start children’s cognitive scores and teachers’ ratings of behavior. J Am Diet Assoc 107:128–133

    PubMed  CAS  Google Scholar 

  • Hunt CD, Halas ES, Sandstead HH (1984) Mild perinatal zinc-deficiency affects brain hippocampal morphology and behavior. Fed Proc 43:382

    Google Scholar 

  • Hurley LS, Swenerton H (1966) Congenital malformations resulting from zinc deficiency in rats. Proc Soc Exp Biol Med 123:692–696

    PubMed  CAS  Google Scholar 

  • Hwang JJ, Park MH, Choi SY, Koh JY (2005) Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J Biol Chem 280:11995–12001

    PubMed  CAS  Google Scholar 

  • Imamura O, Satoh Y, Endo S, Takishima K (2008) Analysis of extracellular signal-regulated kinase 2 function in neural stem/progenitor cells via nervous system-specific gene disruption. Stem Cells 26:3247–3256

    PubMed  CAS  Google Scholar 

  • Imamura O, Pages G, Pouyssegur J, Endo S, Takishima K (2010) ERK1 and ERK2 are required for radial glial maintenance and cortical lamination. Genes Cells 15:1072–1088

    PubMed  CAS  Google Scholar 

  • Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869–883

    PubMed  CAS  Google Scholar 

  • Ito M, Seki T, Liu J, Nakamura K, Namba T, Matsubara Y, Suzuki T, Arai H (2010) Effects of repeated electroconvulsive seizure on cell proliferation in the rat hippocampus. Synapse 64:814–821

    PubMed  CAS  Google Scholar 

  • Kanterewicz BI, Urban NN, et al (2000) The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci 20(9):3057–3066

    Google Scholar 

  • Kawamoto JC, Halas ES (1984) Lasting morphologic effects of mild perinatal zinc deficiency in the adult hippocampal formation. In: Frederickson CJ, Howell GA, Kasarakis EJ (eds) The neurobiology of zinc B: deficiency, toxicity, and pathology. Alan R. Liss, Inc., New York, pp. 33–48

  • Keller KA, Grider A, Coffield JA (2001) Age-dependent influence of dietary zinc restriction on short-term memory in male rats. Physiol Behav 72:339–348

    PubMed  CAS  Google Scholar 

  • Ketterman JK, Li YV (2008) Presynaptic evidence for zinc release at the mossy fiber synapse of rat hippocampus. J Neurosci Res 86:422–434

    PubMed  CAS  Google Scholar 

  • Kim SH, Seo MS, Jeon WJ, Yu HS, Park HG, Jung GA, Lee HY, Kang UG, Kim YS (2008) Haloperidol regulates the phosphorylation level of the MEK-ERK-p90RSK signal pathway via protein phosphatase 2A in the rat frontal cortex. Int J Neuropsychopharmacol 11:509–517

    PubMed  CAS  Google Scholar 

  • Kim Y, Kim SH, Kim YS, Lee YH, Ha K, Shin SY (2011) Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes. Prog Neuropsychopharmacol Biol Psychiatry 35:1026–1032

    PubMed  CAS  Google Scholar 

  • Kirksey A, Wachs TD, Yunis F, Srinath U, Rahmanifar A, McCabe GP, Galal OM, Harrison GG, Jerome NW (1994) Relation of maternal zinc nutriture to pregnancy outcome and infant development in an Egyptian village. Am J Clin Nutr 60:782–792

    PubMed  CAS  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    PubMed  CAS  Google Scholar 

  • Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, Gilliam TC, Nowak NJ, Cook EH Jr, Dobyns WB, Christian SL (2008) Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 17:628–638

    PubMed  CAS  Google Scholar 

  • Liu H, Oteiza PI, Gershwin ME, Golub MS, Keen CL (1992) Effects of maternal marginal zinc deficiency on myelin protein profiles in the suckling rat and infant rhesus monkey. Biol Trace Elem Res 34:55–66

    PubMed  CAS  Google Scholar 

  • Lopez V, Keen CL, Lanoue L (2008) Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model. Biol Trace Elem Res 122:238–255

    PubMed  CAS  Google Scholar 

  • Mackenzie GG, Zago MP, Keen CL, Oteiza PI (2002) Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J Biol Chem 277:34610–34617

    PubMed  CAS  Google Scholar 

  • Mackenzie GG, Zago MP, Erlejman AG, Aimo L, Keen CL, Oteiza PI (2006) Alpha-lipoic acid and N-acetyl cysteine prevent zinc deficiency-induced activation of NF-kappaB and AP-1 transcription factors in human neuroblastoma IMR-32 cells. Free Radic Res 40:75–84

    PubMed  CAS  Google Scholar 

  • Mackenzie GG, Salvador GA, Romero C, Keen CL, Oteiza PI (2011) A deficit in zinc availability can cause alterations in tubulin thiol redox status in cultured neurons and in the developing fetal rat brain. Free Radic Biol Med 51:480–489

    PubMed  CAS  Google Scholar 

  • Maes M, D’Haese PC, Scharpe S, D’Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    PubMed  CAS  Google Scholar 

  • Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Altamura C, Desnyder R (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry 42:349–358

    PubMed  CAS  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I & ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    PubMed  CAS  Google Scholar 

  • Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, Marowsky A, Porrazzo A, Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chapman PF, Pouyssegur J, Brambilla R (2002) Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34:807–820

    PubMed  CAS  Google Scholar 

  • McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, Lunghi P, Bonati A, Martelli AM (2008) Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 22:708–722

    PubMed  CAS  Google Scholar 

  • McLoughlin IJ, Hodge JS (1990) Zinc in depressive disorder. Acta Psychiatr Scand 82:451–453

    PubMed  CAS  Google Scholar 

  • Mebratu Y, Tesfaigzi Y (2009) How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle 8:1168–1175

    PubMed  CAS  Google Scholar 

  • Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369

    PubMed  CAS  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    PubMed  CAS  Google Scholar 

  • Molnar P, Nadler JV (2001) Synaptically-released zinc inhibits N-methyl-d-aspartate receptor activation at recurrent mossy fiber synapses. Brain Res 910:205–207

    PubMed  CAS  Google Scholar 

  • Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59:347–373

    PubMed  CAS  Google Scholar 

  • Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA 98:11569–11574

    PubMed  CAS  Google Scholar 

  • Neary JT, Whittemore SR, Bu Y, Mehta H, Shi YF (2001) Biochemical mechanisms of action of Hypericum LI 160 in glial and neuronal cells: inhibition of neurotransmitter uptake and stimulation of extracellular signal regulated protein kinase. Pharmacopsychiatry 34(Suppl 1):S103–S107

    PubMed  CAS  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    PubMed  CAS  Google Scholar 

  • Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147

    PubMed  CAS  Google Scholar 

  • Pascoli V, Valjent E, Corbille AG, Corvol JC, Tassin JP, Girault JA, Herve D (2005) cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta 1-adrenoceptors. Mol Pharmacol 68:421–429

    PubMed  CAS  Google Scholar 

  • Penland JG, Sandstead HH, Alcock NW, Dayal HH, Chen XC, Li JS, Zhao F, Yang JJ (1997) A preliminary report: effects of zinc and micronutrient repletion on growth and neuropsychological function of urban Chinese children. J Am Coll Nutr 16:268–272

    PubMed  CAS  Google Scholar 

  • Qi X, Lin W, Li J, Pan Y, Wang W (2006) The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress. Behav Brain Res 175:233–240

    PubMed  CAS  Google Scholar 

  • Qi X, Lin W, Li J, Li H, Wang W, Wang D, Sun M (2008) Fluoxetine increases the activity of the ERK-CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol Dis 31:278–285

    PubMed  CAS  Google Scholar 

  • Rantamaki T, Vesa L, Antila H, Di Lieto A, Tammela P, Schmitt A, Lesch KP, Rios M, Castren E (2011) Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS One 6:e20567

    PubMed  CAS  Google Scholar 

  • Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH (1995) Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 92:8881–8885

    PubMed  CAS  Google Scholar 

  • Reus GZ, Stringari RB, Ribeiro KF, Ferraro AK, Vitto MF, Cesconetto P, Souza CT, Quevedo J (2011) Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav Brain Res 221:166–171

    PubMed  CAS  Google Scholar 

  • Rowin J, Lewis SL (2005) Copper deficiency myeloneuropathy and pancytopenia secondary to overuse of zinc supplementation. J Neurol Neurosurg Psychiatry 76:750–751

    PubMed  CAS  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    PubMed  CAS  Google Scholar 

  • Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995

    PubMed  CAS  Google Scholar 

  • Samuels IS, Saitta SC, Landreth GE (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61:160–167

    PubMed  CAS  Google Scholar 

  • Sandstrom B (2001) Micronutrient interactions: effects on absorption and bioavailability. Br J Nutr 85(Suppl 2):S181–S185

    PubMed  CAS  Google Scholar 

  • Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, Itohara S, Takishima K (2007) Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci 27:10765–10776

    PubMed  CAS  Google Scholar 

  • Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T, Watanabe Y, Kazama T (2011) ERK2 contributes to the control of social behaviors in mice. J Neurosci 31:11953–11967

    PubMed  CAS  Google Scholar 

  • Sawada T, Yokoi K (2010) Effect of zinc supplementation on mood states in young women: a pilot study. Eur J Clin Nutr 64:331–333

    PubMed  CAS  Google Scholar 

  • Sazawal S, Black RE, Menon VP, Dinghra P, Caulfield LE, Dhingra U, Bagati A (2001) Zinc supplementation in infants born small for gestational age reduces mortality: a prospective, randomized, controlled trial. Pediatrics 108:1280–1286

    PubMed  CAS  Google Scholar 

  • Schiavon AP, Milani H, Romanini CV, Foresti ML, Castro OW, Garcia-Cairasco N, de Oliveira RM (2010) Imipramine enhances cell proliferation and decreases neurodegeneration in the hippocampus after transient global cerebral ischemia in rats. Neurosci Lett 470:43–48

    PubMed  CAS  Google Scholar 

  • Shalin SC, Zirrgiebel U, Honsa KJ, Julien JP, Miller FD, Kaplan DR, Sweatt JD (2004) Neuronal MEK is important for normal fear conditioning in mice. J Neurosci Res 75:760–770

    PubMed  CAS  Google Scholar 

  • She QB, Ma WY, Zhong S, Dong Z (2002) Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of Bad by ultraviolet B radiation. J Biol Chem 277:24039–24048

    PubMed  CAS  Google Scholar 

  • Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    PubMed  Google Scholar 

  • Sindreu C, Palmiter RD, Storm DR (2011) Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci USA 108:3366–3370

    PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    PubMed  CAS  Google Scholar 

  • Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA (2004) JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18:189–218

    PubMed  CAS  Google Scholar 

  • Suh SW, Thompson RB, Frederickson CJ (2001) Loss of vesicular zinc and appearance of perikaryal zinc after seizures induced by pilocarpine. Neuroreport 12:1523–1525

    PubMed  CAS  Google Scholar 

  • Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    PubMed  CAS  Google Scholar 

  • Tahmasebi Boroujeni S, Naghdi N, Shahbazi M, Farrokhi A, Bagherzadeh F, Kazemnejad A, Javadian M (2009) The effect of severe zinc deficiency and zinc supplement on spatial learning and memory. Biol Trace Elem Res 130:48–61

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Kan F, Itoh H, Oku N (2007) Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res 177:1–6

    PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Kan F, Hanajima T, Yamada K, Oku N (2008) Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency. Life Sci 82:909–914

    PubMed  CAS  Google Scholar 

  • Takeda A, Fuke S, Ando M, Oku N (2009) Positive modulation of long-term potentiation at hippocampal CA1 synapses by low micromolar concentrations of zinc. Neuroscience 158:585–591

    PubMed  CAS  Google Scholar 

  • Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95:365–369

    PubMed  CAS  Google Scholar 

  • Taubeneck MW, Daston GP, Rogers JM, Keen CL (1994) Altered maternal zinc metabolism following exposure to diverse developmental toxicants. Reprod Toxicol 8:25–40

    PubMed  CAS  Google Scholar 

  • Taubeneck MW, Daston GP, Rogers JM, Gershwin ME, Ansari A, Keen CL (1995) Tumor necrosis factor-alpha alters maternal and embryonic zinc metabolism and is developmentally toxic in mice. J Nutr 125:908–919

    PubMed  CAS  Google Scholar 

  • Toren P, Eldar S, Sela BA, Wolmer L, Weitz R, Inbar D, Koren S, Reiss A, Weizman R, Laor N (1996) Zinc deficiency in attention-deficit hyperactivity disorder. Biol Psychiatry 40:1308–1310

    PubMed  CAS  Google Scholar 

  • Uckardes Y, Ozmert EN, Unal F, Yurdakok K (2009) Effects of zinc supplementation on parent and teacher behaviour rating scores in low socioeconomic level Turkish primary school children. Acta Paediatr 98:731–736

    PubMed  CAS  Google Scholar 

  • Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B Dev Reprod Toxicol 89:313–325

    PubMed  CAS  Google Scholar 

  • Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ (1994) Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102(Suppl 2):5–46

    PubMed  CAS  Google Scholar 

  • Wang FD, Bian W, Kong LW, Zhao FJ, Guo JS, Jing NH (2001) Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice. Cell Res 11:135–141

    PubMed  CAS  Google Scholar 

  • Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ (2008) Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 358:667–675

    PubMed  CAS  Google Scholar 

  • Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158

    PubMed  CAS  Google Scholar 

  • Xu H, Gao HL, Zheng W, Xin N, Chi ZH, Bai SL, Wang ZY (2011) Lactational zinc deficiency-induced hippocampal neuronal apoptosis by a BDNF-independent TrkB signaling pathway. Hippocampus 21:495–501

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E (2006) Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr Biol 16:1171–1182

    PubMed  CAS  Google Scholar 

  • Yang X, Liu L, Sternberg D, Tang L, Galinsky I, DeAngelo D, Stone R (2005) The FLT3 Internal tandem duplication mutation prevents apoptosis in interleukin-3-deprived BaF3 cells due to protein kinase A and ribosomal S6 kinase 1-mediated BAD phosphorylation at serine 112. Cancer Res 65:7338–7347

    PubMed  CAS  Google Scholar 

  • Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98:2317–2322

    PubMed  CAS  Google Scholar 

  • Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP, Ferreira CV (2008) Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem 22:497–506

    PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X(L). Cell 87:619–628

    PubMed  CAS  Google Scholar 

  • Zhang F, Wang S, Signore AP, Chen J (2007) Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke 38:2329–2336

    PubMed  CAS  Google Scholar 

  • Zheng CF, Guan KL (1993) Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J Biol Chem 268:11435–11439

    PubMed  CAS  Google Scholar 

  • Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che XM, Culmsee C, Klumpp S, Krieglstein J (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from the University of California, Davis, and NIH (grant # HD 01743), USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Oteiza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuttall, J.R., Oteiza, P.I. Zinc and the ERK Kinases in the Developing Brain. Neurotox Res 21, 128–141 (2012). https://doi.org/10.1007/s12640-011-9291-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9291-6

Keywords

Navigation