Skip to main content
Log in

Development and Validation of a Screening Assay for the Evaluation of Putative Neuroprotective Agents in the Treatment of Parkinson’s Disease

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Following initial diagnosis of Parkinson’s disease, if it were possible to prescribe a treatment that could halt or prevent further neurodegeneration, disease progression could be prevented. The aim of this study was to generate a quick and reliable assay for assessing putative neuroprotective agents for parkinsonian patients. Abnormalities in mitochondria, proteasome and lysosome function, as well as oxidative stress cause cell death in Parkinson’s disease. Thus, we exposed neuroblastoma (SH-SY5Y) cells to EC50 of toxins that mimic these cell death mechanisms (dopamine to induce oxidative stress; naphthazarin to inhibit lysosome function; proteasome inhibitor N-carbobenzyloxy-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) to inhibit the UPS (ubiquitin proteasome system) and rotenone to inhibit mitochondria function) in the presence of five compounds previously chosen as neuroprotective agents, and assessed cell viability. Coenzyme Q10 (117 μM) significantly protected against four toxins, dopamine: 16.3 ± 3.3%; naphthazarin: 10.8 ± 1.1%; PSI: 16.2 ± 2.9%; rotenone: 53.2 ± 4.2%; whereas caffeine (140 μM), creatine (25 mM), nicotine (1 μM) and deprenyl (10 μM) provided protection against some, but not all toxins. Interestingly, coenzyme Q10 is the only compound out of the five that showed neuroprotective potential in clinical trials. Thus, there is a direct correlation between the success of disease modifying agents in the clinic and their ability to protect against multiple cell death mechanisms in this assay. We propose that exposure of SH-SY5Y cells to different toxins that recapitulate cell death mechanisms in Parkinson’s disease serves as a rapid and reliable method to test neuroprotective agents that may succeed in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATP:

Adenosine-5′-triphosphate

MOAB :

Monoamine oxidase B

CINAPS:

Committee to identify neuroprotective agents in Parkinson’s.

DMSO:

Dimethyl sulfoxide

l-DOPA:

l-3,4-Dihydroxyphenylalanine

NINDS:

National Institute of Neurologic Disorders and Stroke

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NAP:

5,8-Dihydroxy-1,4-naphthoquinone

PSI:

N-arbobenzyloxy-Ile-Glu(O-t-butyl)-Ala-leucinal

ROT:

Rotenone

SH-SY5Y:

Catecholaminergic neuroblastoma cells

UPS:

Ubiquitin proteasome system

References

  • Andres RH, Huber AW, Schlattner U, Perez-Bouza A, Krebs SH, Seiler RW, Wallimann T, Widmer HR (2005) Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience 133:701–713

    Article  PubMed  CAS  Google Scholar 

  • Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA (2004) UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson’s disease. J Neurochem 90:379–391

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Koch W, Elstner M, Schombacher Y, Bender J, Moeschl M, Gekeler F, Muller-Myhsok B, Gasser T, Tatsch K, Klopstock T (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67:1262–1264

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2005) Ubiquitin-proteasome system and Parkinson’s diseases. Exp Neurol 191(Suppl 1):S17–S27

    Article  PubMed  CAS  Google Scholar 

  • Canu N, Barbato C, Ciotti MT, Serafino A, Dus L, Calissano P (2000) Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J Neurosci 20:589–599

    PubMed  CAS  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6:79–87

    Article  PubMed  CAS  Google Scholar 

  • Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ, Beal MF (2008) Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem 104:1613–1621

    Article  PubMed  CAS  Google Scholar 

  • Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782

    PubMed  CAS  Google Scholar 

  • Di Fonzo A et al (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:1557–1562

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    PubMed  Google Scholar 

  • Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH (1999) Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol 360:256–261

    Article  PubMed  CAS  Google Scholar 

  • Forsmark-Andree P, Lee CP, Dallner G, Ernster L (1997) Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 22:391–400

    Article  PubMed  CAS  Google Scholar 

  • Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  PubMed  CAS  Google Scholar 

  • Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A, Snyder SH (2006) Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA 103:3887–3889

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk J, Tobin AJ, Ravina B (2002) From chemical to drug: neurodegeneration drug screening and the ethics of clinical trials. Nat Neurosci 5 Suppl:1027–1029

    Article  PubMed  Google Scholar 

  • Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Article  PubMed  Google Scholar 

  • Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 18:925–964

    PubMed  CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 3:S26–S38

    Article  Google Scholar 

  • Kataoka M, Tonooka K, Ando T, Imai K, Aimoto T (1997) Hydroxyl radical scavenging activity of nonsteroidal anti-inflammatory drugs. Free Radic Res 27:419–427

    Article  PubMed  CAS  Google Scholar 

  • Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile Parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  • Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Muller D, van Oostrum J, Waldmeier P, Furst P (1998) Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(−)-deprenyl. J Biol Chem 273:5821–5828

    Article  PubMed  CAS  Google Scholar 

  • Lai CT, Yu PH (1997) R(−)-deprenyl potentiates dopamine-induced cytotoxicity toward catecholaminergic neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 142:186–191

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal M (1998) Coenzyme Q10 administration increases brain mitochondrial concentration and exerts neuroprotective effects. Proc Natl Acad Sci USA 95:8892–8897

    Article  PubMed  CAS  Google Scholar 

  • Menke T, Gille G, Reber F, Janetzky B, Andler W, Funk RH, Reichmann H (2003) Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18:65–72

    Article  PubMed  CAS  Google Scholar 

  • Mohanakumar KP, Muralikrishnan D, Thomas B (2000) Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Brain Res 864:281–290

    Article  PubMed  CAS  Google Scholar 

  • Moon Y, Lee KH, Park JH, Geum D, Kim K (2005) Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Murray AM, Weihmueller FB, Marshall JF, Hurtig HI, Gottleib GL, Joyce JN (1995) Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with Parkinsonism. Ann Neurol 37:300–312

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23:S8–19

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW (2008) Levodopa/dopamine replacement strategies in Parkinson’s disease–future directions. Mov Disord 23(Suppl):S613–S622

    Article  PubMed  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    Article  PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    PubMed  CAS  Google Scholar 

  • Paterson IA, Zhang D, Warrington RC, Boulton AA (1998) R-deprenyl and R-2-heptyl-N-methylpropargylamine prevent apoptosis in cerebellar granule neurons induced by cytosine arabinoside but not low extracellular potassium. J Neurochem 70:515–523

    Article  PubMed  CAS  Google Scholar 

  • Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary Parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  • Ravina BM, Fagan SC, Hart RG, Hovinga CA, Murphy DD, Dawson TM, Marler JR (2003) Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology 60:1234–1240

    PubMed  CAS  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82

    Article  PubMed  CAS  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Article  PubMed  Google Scholar 

  • Simon DK, Swearingen CJ, Hauser RA, Trugman JM, Aminoff MJ, Singer C, Truong D, Tilley BC (2008) Caffeine and progression of Parkinson disease. Clin Neuropharmacol 31:189–196

    Article  PubMed  CAS  Google Scholar 

  • Somayajulu-Nitu M, Sandhu JK, Cohen J, Sikorska M, Sridhar TS, Matei A, Borowy-Borowski H, Pandey S (2009) Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci 10:88

    Article  PubMed  Google Scholar 

  • Suchowersky O, Gronseth G, Perlmutter J, Reich S, Zesiewicz T, Weiner WJ (2006) Practice parameter: neuroprotective strategies and alternative therapies for Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66:976–982

    Article  PubMed  CAS  Google Scholar 

  • Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134:109–118

    Article  PubMed  CAS  Google Scholar 

  • Tuite P, Riss J (2003) Recent developments in the pharmacological treatment of Parkinson’s disease. Expert Opin Investig Drugs 12:1335–1352

    Article  PubMed  CAS  Google Scholar 

  • Xie YX, Bezard E, Zhao BL (2005) Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J Biol Chem 280:32405–32412

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Sciences and Engineering Research Council of Canada, the University of Toronto Connaught Foundation and the Canadian Foundation for Innovation for funding these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Nash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong-Kee, C.J., Salomonczyk, D. & Nash, J.E. Development and Validation of a Screening Assay for the Evaluation of Putative Neuroprotective Agents in the Treatment of Parkinson’s Disease. Neurotox Res 19, 519–526 (2011). https://doi.org/10.1007/s12640-010-9174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9174-2

Keywords

Navigation