Skip to main content
Log in

6-Hydroxydopamine Lesions in the Rat Neostriatum Impair Sequential Learning in a Serial Reaction Time Task

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Sequential behavior has been intensively investigated in humans using so-called serial reaction time tasks (SRTT), in which visual stimuli are either presented in a random or sequential order. Typically, when the stimulus presentation follows a previously learned sequential order, reaction times are decreased compared to random stimulus presentation and become partly automated. A vast amount of SRTT findings indicates that sequential learning and performance seem to be mediated amongst others by the basal ganglia—especially the striatum—and the neurotransmitter dopamine therein. In this study we used an operant rat version of the human four choice SRTT to investigate the effect of bilateral neostriatal dopamine lesions induced by 6-hydroxydopamine on sequential learning. The rats’ task was to respond rapidly to illuminated holes by nose-poking into them. During extensive training, the position of the illuminated hole followed a 12-item sequence. The outcome of this sequential training was also investigated in two tests, namely an interference test, where stimulus presentation switched between this sequential and a pseudo random order every five minutes, and a violation test, in which only one sequence item was eventually skipped. The neurotoxic lesions, which was placed before the start of training, led to the expected sub-total dopamine depletions (i.e. residual levels around 34–56% of controls), especially in the medial neostriatum. These lesions did not lead to general motor deficits in a catalepsy task, but moderate deficits in locomotion in an activity box, which largely recovered with time after lesion. In the SRTT, rats with lesions showed impaired learning, that is, less response accuracy and slower reaction times than the control group. During a subsequent test with alternating phases of sequential and random stimulus presentations, reaction times and accuracy of the control group were superior during sequential as compared to random stimulus phases. In the lesion group, only a moderate advantage in accuracy was observed. In the violation test, another outcome measure, the control group showed an expected increase in reaction times on the violated positions. By contrast, the lesion group showed no such increase, which indicates less automation of sequential behavior in these animals. For one, these findings support previous evidence in showing that neostriatal dopamine plays an important role for instrumental behavior, in general. Furthermore, and most importantly, they suggest that dopaminergic-striatal networks also play an important role in sequential behavior, especially its acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

DA:

Dopamine

FR:

Fixed ratio

PD:

Parkinson’s disease

RT:

Reaction time

SRTT:

Serial reaction time task

References

  • Abdi H (2007) Bonferroni and Sidak corrections for multiple comparisons. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, CA

    Google Scholar 

  • Amalric M, Moukhles H, Nieoullon A, Daszuta A (1995) Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur J Neurosci 7:972–980

    Article  CAS  PubMed  Google Scholar 

  • Antoniou K, Papadopoulou-Daifotis Z, Kafetzopoulos E (1998) Differential alterations in basal and D-amphetamine-induced behavioural pattern following 6-OHDA or ibotenic acid lesions into the dorsal striatum. Behav Brain Res 97:13–28

    Article  CAS  PubMed  Google Scholar 

  • Ashby FG, Ennis JM, Spiering BJ (2007) A neurobiological theory of automaticity in perceptual categorization. Psychol Rev 114:632–656

    Article  PubMed  Google Scholar 

  • Badgaiyan RD, Fischman AJ, Alpert NM (2007) Striatal dopamine release in sequential learning. Neuroimage 38:549–556

    Article  PubMed  Google Scholar 

  • Branchi I, D’Andrea I, Armida M, Cassano T, Pezzola A, Potenza RL, Morgese MG, Popoli P, Alleva E (2008) Nonmotor symptoms in Parkinson’s disease: investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat model. J Neurosci Res 86:2050–2061

    Article  CAS  PubMed  Google Scholar 

  • Cass WA, Peters LE, Smith MP (2005) Reductions in spontaneous locomotor activity in aged male, but not female, rats in a model of early Parkinson’s disease. Brain Res 1034:153–161

    Article  CAS  PubMed  Google Scholar 

  • Courtiere A, Hardouin J, Locatelli V, Turle-Lorenzo N, Amalric M, Vidal F, Hasbroucq T (2005) Selective effects of partial striatal 6-OHDA lesions on information processing in the rat. Eur J Neurosci 21:1973–1983

    Article  PubMed  Google Scholar 

  • Da Cunha C, Wietzikoski EC, Dombrowski P, Bortolanza M, Santos LM, Boschen SL, Miyoshi E (2009) Learning processing in the basal ganglia: a mosaic of broken mirrors. Behav Brain Res 199:157–170

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2005) Sequential behavior in the rat: a new model using food-reinforced instrumental behavior. Behav Brain Res 160:197–207

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2006) The serial reaction time task in the rat: effects of D1 and D2 dopamine-receptor antagonists. Behav Brain Res 175:212–222

    Article  CAS  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2007) Sequential behavior in the rat: role of skill and attention. Exp Brain Res 182:223–231

    Article  PubMed  Google Scholar 

  • Domenger D, Schwarting RK (2008) Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neurosci Lett 444:212–216

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Ungerleider LG (2002) Functional anatomy of motor skill learning. In: Squire LR, Schachter DL (eds) Neuropsychology of memory. Guilford, New York, pp 225–238

    Google Scholar 

  • Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG (2002) Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA 99:1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Faure A, Haberland U, Conde F, El Massioui N (2005) Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780

    Article  CAS  PubMed  Google Scholar 

  • Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 148:78–87

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136

    Article  CAS  PubMed  Google Scholar 

  • Howell DC (2002) Statistical methods for psychology. Duxbury, Pacific Grove, CA

    Google Scholar 

  • Jinnah HA, Hess EJ (2003) Assessment of movement disorders in rodents. In: LeDoux M (ed) Animal models of movement disorders. Elsevier, New York, pp 55–71

    Google Scholar 

  • Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 152:259–277

    Article  CAS  PubMed  Google Scholar 

  • Lindner MD, Plone MA, Francis JM, Blaney TJ, Salamone JD, Emerich DF (1997) Rats with partial striatal dopamine depletions exhibit robust and long-lasting behavioral deficits in a simple fixed-ratio bar-pressing task. Behav Brain Res 86:25–40

    Article  CAS  PubMed  Google Scholar 

  • Nissen MJ, Bullemer P (1987) Attentional requirements of learning: evidence from performance measures. Cogn Psychol 19:1–32

    Article  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotactic coordinates. Elsevier, London

    Google Scholar 

  • Reed J, Johnson P (1994) Assessing implicit learning with indirect tests: determinating what is learned about sequence structure. J Exp Psychol 20:585–594

    Google Scholar 

  • Robbins TW, Giardini V, Jones GH, Reading P, Sahakian BJ (1990) Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task. Behav Brain Res 38:243–261

    Article  CAS  PubMed  Google Scholar 

  • Sandberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    Article  Google Scholar 

  • Scholtissen B, Deumens R, Leentjens AF, Schmitz C, Blokland A, Steinbusch HW, Prickaerts J (2006) Functional investigations into the role of dopamine and serotonin in partial bilateral striatal 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav 83:175–185

    Article  CAS  PubMed  Google Scholar 

  • Schwarting RK (2009) Rodent models of serial reaction time tasks and their implementation in neurobiological research. Behav Brain Res 199:76–88

    Article  PubMed  Google Scholar 

  • Siegert RJ, Taylor KD, Weatherall M, Abernethy DA (2006) Is implicit sequence learning impaired in Parkinson’s disease? A meta-analysis. Neuropsychology 20:490–495

    Article  PubMed  Google Scholar 

  • Vandenbossche J, Deroost N, Soetens E, Kerckhofs E (2009) Does implicit learning in non-demented Parkinson’s disease depend on the level of cognitive functioning? Brain Cogn 69:194–199

    Article  PubMed  Google Scholar 

  • Werheid K, Ziessler M, Nattkemper D, Yves von Cramon D (2003) Sequence learning in Parkinson’s disease: the effect of spatial stimulus-response compatibility. Brain Cogn 52:239–249

    Article  PubMed  Google Scholar 

  • Wilcox RR (1987) New designs in analysis of variance. Annu Rev Psychol 38:29–60

    Article  Google Scholar 

  • Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 9:181–189

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, Schw 559/6-1). Moritz Thede Eckart is a member of the DFG graduate program “NeuroAct”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Thede Eckart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckart, M.T., Huelse-Matia, M.C., McDonald, R.S. et al. 6-Hydroxydopamine Lesions in the Rat Neostriatum Impair Sequential Learning in a Serial Reaction Time Task. Neurotox Res 17, 287–298 (2010). https://doi.org/10.1007/s12640-009-9103-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9103-4

Keywords

Navigation