Skip to main content
Log in

Zinc Deficiency Reduces Neurogenesis Accompanied by Neuronal Apoptosis Through Caspase-Dependent and -Independent Signaling Pathways

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dietary zinc deficiency may affect zinc homeostasis in the brain and lead to reductions of neurogenesis and neuronal survival. However, the mechanisms responsible for the effects of zinc deficiency on hippocampal neurogenesis and neuronal death remain obscure. In the present study, young CD-1 mice were fed with zinc-deficient diet (0.85 ppm) for 5 weeks. The vesicular zinc was reduced at CA1 and CA3 regions of the hippocampus in zinc-deficient mice. The significant decreased zinc ions was associated with a reduction in proliferating cells labeled with bromo-deoxyuridine (BrdU) and immature neurons labeled with doublecortin (DCX) immunoreactivity in the dentate gyrus of the hippocampus. The processes of DCX-positive neurons were shortened, and flexuously went through into the granular cell layer in zinc-deficient hippocampus. There was also a conspicuous increase in the number of TUNEL-positive cells in the hippocampus after zinc-deficient diet treatment. Meanwhile, the apoptosis proteins, including Fas, Fas ligand (FasL), apoptosis inducing factor (AIF), and caspase-3, were significantly activated in zinc-deficient mouse hippocampus. These data suggest that chronic treatment with zinc-deficient diet results in reduction in hippocampal neurogenesis and increases neuronal apoptosis, indicating that zinc deficiency is associated with destroying structural plasticity in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    Article  PubMed  CAS  Google Scholar 

  • Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, Santi S, Cuppini R (2004a) Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res 1017:21–31

    Article  PubMed  CAS  Google Scholar 

  • Ambrogini P, Orsini L, Mancini C, Ferri P, Ciaroni S, Cuppini R (2004b) Learning may reduce neurogenesis in adult rat dentate gyrus. Neurosci Lett 359:13–16

    Article  PubMed  CAS  Google Scholar 

  • Barinaga M (1995) Dendrites shed their dull image. Science 268:200–201

    Article  PubMed  CAS  Google Scholar 

  • Bywood PT, Johnson SM (2000) Dendrite loss is a characteristic early indicator of toxin-induced neurodegeneration in rat midbrain slices. Exp Neurol 161:306–316

    Article  PubMed  CAS  Google Scholar 

  • Chi ZH, Wang X, Wang ZY, Gao HL, Dahlstrom A, Huang L (2006) Zinc transporter 7 is located in the cis-Golgi apparatus of mouse choroid epithelial cells. Neuroreport 17:1807–1811

    Article  PubMed  CAS  Google Scholar 

  • Chi ZH, Feng WY, Gao HL, Zheng W, Huang L, Wang ZY (2009) ZNT7 and Zn2+ are present in different cell populations in the mouse testis. Histol Histopathol 24:25–30

    PubMed  Google Scholar 

  • Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M (2006) Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem 41:57–139

    Article  PubMed  CAS  Google Scholar 

  • Didier A, Windisch W, Pfaffl MW (2004) Elevated caspase-3 and Fas mRNA expression in jejunum of adult rats during subclinical zinc deficiency. J Trace Elem Med Biol 18:41–45

    Article  PubMed  CAS  Google Scholar 

  • Farioli-Vecchioli S, Saraulli D, Costanzi M et al (2008) The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol 6:e246

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  PubMed  CAS  Google Scholar 

  • Gao HL, Xu H, Wang X, Dahlstrom A, Huang L, Wang ZY (2008) Expression of zinc transporter ZnT7 in mouse superior cervical ganglion. Auton Neurosci 140:59–65

    Article  PubMed  CAS  Google Scholar 

  • Golub MS, Keen CL, Gershwin ME, Hendrickx AG (1995) Developmental zinc deficiency and behavior. J Nutr 125:2263S–2271S

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, Hastings NB, Shors TJ (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3:186–192

    Article  PubMed  Google Scholar 

  • Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY (2006) Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience 139:609–627

    Article  PubMed  CAS  Google Scholar 

  • Halas ES, Eberhardt MJ, Diers MA, Sandstead HH (1983) Learning and memory impairment in adult rats due to severe zinc deficiency during lactation. Physiol Behav 30:371–381

    Article  PubMed  CAS  Google Scholar 

  • Halas ES, Hunt CD, Eberhardt MJ (1986) Learning and memory disabilities in young adult rats from mildly zinc deficient dams. Physiol Behav 37:451–458

    Article  PubMed  CAS  Google Scholar 

  • Jessberger S, Romer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196:342–351

    Article  PubMed  CAS  Google Scholar 

  • Joo JY, Kim BW, Lee JS, Park JY, Kim S, Yun YJ, Lee SH, Rhim H, Son H (2007) Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells. J Cell Sci 120:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Kaech S, Kim JB, Cariola M, Ralston E (1996) Improved lipid-mediated gene transfer into primary cultures of hippocampal neurons. Brain Res Mol Brain Res 35:344–348

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    Article  PubMed  CAS  Google Scholar 

  • Kesner RP, Rogers J (2004) An analysis of independence and interactions of brain substrates that subserve multiple attributes, memory systems, and underlying processes. Neurobiol Learn Mem 82:199–215

    Article  PubMed  Google Scholar 

  • Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257:271–280

    Article  PubMed  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  • Li Y, Hough CJ, Frederickson CJ, Sarvey JM (2001) Induction of mossy fiber → CA3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci 21:8015–8025

    PubMed  CAS  Google Scholar 

  • Liu Y, Bao J, Lai H, Yang C, Feng X, Li J (2000) Structural changes of neurons in hippocampus from infantile rats exposed to hyperbaric oxygen. Chin J Traumatol 3:206–209

    PubMed  Google Scholar 

  • Lu YM, Taverna FA, Tu R, Ackerley CA, Wang YT, Roder J (2000) Endogenous Zn(2+) is required for the induction of long-term potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse 38:187–197

    Article  PubMed  CAS  Google Scholar 

  • Markakis EA, Gage FH (1999) Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 406:449–460

    Article  PubMed  CAS  Google Scholar 

  • Naganska E, Matyja E (2006) Apoptotic neuronal changes enhanced by zinc chelator—TPEN in organotypic rat hippocampal cultures exposed to anoxia. Folia Neuropathol 44:125–132

    PubMed  CAS  Google Scholar 

  • Prickaerts J, Koopmans G, Blokland A, Scheepens A (2004) Learning and adult neurogenesis: survival with or without proliferation? Neurobiol Learn Mem 81:1–11

    Article  PubMed  Google Scholar 

  • Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K, Potts MB, Fike JR (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 202:189–199

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103:17501–17506

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E (2002) Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12:578–584

    Article  PubMed  Google Scholar 

  • Smart TG, Hosie AM, Miller PS (2004) Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist 10:432–442

    Article  PubMed  CAS  Google Scholar 

  • Sokolov EN, Nezlina NI (2004) Long-term memory, neurogenesis, and signal novelty. Neurosci Behav Physiol 34:847–857

    Article  PubMed  CAS  Google Scholar 

  • Strosznajder R, Gajkowska B (2006) Effect of 3-aminobenzamide on Bcl-2, Bax and AIF localization in hippocampal neurons altered by ischemia-reperfusion injury. The immunocytochemical study. Acta Neurobiol Exp (Wars) 66:15–22

    Google Scholar 

  • Suh SW, Listiack K, Bell B et al (1999) Detection of pathological zinc accumulation in neurons: methods for autopsy, biopsy, and cultured tissue. J Histochem Cytochem 47:969–972

    PubMed  CAS  Google Scholar 

  • Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Brain Res Rev 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Takefuta S, Okada S, Oku N (2000) Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 859:352–357

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Takefuta S, Tochigi M, Oku N (2001) Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 63:447–452

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Seki Y, Oku N (2003) Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Res 57:169–174

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75:225–229

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Tamano H, Nagayoshi A, Yamada K, Oku N (2005) Increase in hippocampal cell death after treatment with kainate in zinc deficiency. Neurochem Int 47:539–544

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Kanno S, Sakurada N, Ando M, Oku N (2008a) Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc. J Neurosci Res 86:2906–2911

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Yamada K, Tamano H, Fuke S, Kawamura M, Oku N (2008b) Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 52:241–246

    Article  PubMed  CAS  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Wang FD, Zhao FJ, Jing NH (1999) Effect of dietary zinc on microtubule-associated protein 2 expression in the brain of mice. Sheng Li Xue Bao 51:495–500

    PubMed  CAS  Google Scholar 

  • Wang FD, Bian W, Kong LW, Zhao FJ, Guo JS, Jing NH (2001) Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice. Cell Res 11:135–141

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Danscher G, Dahlstrom A, Li JY (2003) Zinc transporter 3 and zinc ions in the rodent superior cervical ganglion neurons. Neuroscience 120:605–616

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang ZY, Gao HL, Danscher G, Huang L (2006) Localization of ZnT7 and zinc ions in mouse retina—immunohistochemistry and selenium autometallography. Brain Res Bull 71:91–96

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Wojtowicz JM, Sekeres M, Snyder JS, Wang S (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16:296–304

    Article  PubMed  Google Scholar 

  • Zhang L, Chi ZH, Ren H, Rong M, Dahlstrom A, Huang L, Wang ZY (2007) Immunoreactivity of zinc transporter 7 (ZNT7) in mouse dorsal root ganglia. Brain Res Bull 74:278–283

    Article  PubMed  CAS  Google Scholar 

  • Zhang LH, Wang X, Stoltenberg M, Danscher G, Huang L, Wang ZY (2008) Abundant expression of zinc transporters in the amyloid plaques of Alzheimer’s disease brain. Brain Res Bull 77:55–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Natural Science Foundation of China (30370452, 30770680), the Program for New Century Excellent Talents in University (NCET-04-0288), the China Postdoctoral Science Foundation (2005037008), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP-20060159001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-You Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, HL., Zheng, W., Xin, N. et al. Zinc Deficiency Reduces Neurogenesis Accompanied by Neuronal Apoptosis Through Caspase-Dependent and -Independent Signaling Pathways. Neurotox Res 16, 416–425 (2009). https://doi.org/10.1007/s12640-009-9072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9072-7

Keywords

Navigation