Skip to main content

Advertisement

Log in

Sera from Children with Autism Alter Proliferation of Human Neuronal Progenitor Cells Exposed to Oxidation

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Altered brain development during embryogenesis and early postnatal life has been hypothesized to be responsible for the abnormal behaviors of people with autism. The specific genetic background that alters vulnerability to some environmental insults has been suggested in the etiology of autism; however, the specific pathomechanisms have not been identified. Recently, we showed that sera from children with autism alter the maturation of human neuronal progenitor cells (NPCs) in culture. Results suggest that pre-programmed neurogenesis, i.e., neuronal proliferation, migration, differentiation, growth, and circuit organization, can be affected differently by factors present in autistic sera. In this report, we tested the effect of autistic sera on the vulnerability of NPCs to oxidative stress—a recognized risk factor of autism. We found that mild oxidative stress reduced proliferation of differentiating NPCs but not immature NPCs. This decrease of proliferation was less prominent in cultures treated with sera from children with autism than from age-matched controls. These results suggest that altered response of NPCs to oxidative stress may play a role in the etiology of autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta MT, Pearl PL (2003) The neurobiology of autism: new pieces of the puzzle. Curr Neurol Neurosci Rep 3:149–156

    Article  PubMed  Google Scholar 

  • Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    Article  PubMed  CAS  Google Scholar 

  • Bernier PJ, Vinet J, Cossette M, Paretn A (2000) Characterization of the subventricular zone of the adult human brain: evidence for the involvement of Bcl-2. Neurosci Res 37:67–78

    Article  PubMed  CAS  Google Scholar 

  • Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35:471–478

    Article  PubMed  CAS  Google Scholar 

  • Bissonnette RP, Echeverri F, Mahboubi A, Green DR (1992) Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359:552–554

    Article  PubMed  CAS  Google Scholar 

  • Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferring—the antioxidant proteins. Life Sci 75:2534–2549

    Article  Google Scholar 

  • Clark-Taylor T, Clark-Taylor BE (2004) Is autism disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Med Hypotheses 62:970–975

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Gao F, Flagg T, May WS (2004) Mono- and multisite phosphorylation enhances Bcl2’s antiapoptotic function and inhibition of cell cycle entry functions. Proc Natl Acad Sci USA 101:153–158

    Article  PubMed  CAS  Google Scholar 

  • Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008) How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 29:190–201

    Article  PubMed  CAS  Google Scholar 

  • Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8:1–6

    Google Scholar 

  • Gage FH, Ray J, Fisher L (1995) Isolation, characterization, and use of stem cells from the CNS. Ann Rev Neurosci 18:159–192

    Article  PubMed  CAS  Google Scholar 

  • Ishii J, Natsume A, Wakabayashi T, Takeuchi H, Hasegawa H, Kim SU, Yoshida J (2007) The free-radical scavenger edaravone restores the differentiation of human neuronal precursor cells after radiation-induced oxidative stress. Neurosci Lett 423:225–230

    Article  PubMed  CAS  Google Scholar 

  • James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet Neuropsychiatr Genet 141:947–956

    Google Scholar 

  • Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Develop 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 9:485–499

    Article  PubMed  CAS  Google Scholar 

  • Madhavan L, Ourednik V, Ourednik J (2005) Grafted neural stem cells shield the host environment from oxidative stress. Ann NY Acad Sci 1049:185–188

    Article  PubMed  Google Scholar 

  • Madhavan L, Ourednik V, Ourednik J (2006) Increased “vigilance” of antioxidant mechanisms in neuronal stem cells potentiates their capacity to resist oxidative stress. Stem Cells 24:2110–2119

    Article  PubMed  CAS  Google Scholar 

  • Madhavan L, Ourednik V, Ourednik J (2008) Neural stem/progenitor cells initiate the formation of cellular networks that provide neuroprotection by growth factor-modulated antioxidant expression. Stem Cells 26:254–265

    Article  PubMed  CAS  Google Scholar 

  • Mazur-Kolecka B, Frackowiak J (2006) Neprilysin protects human neuronal progenitor cells against impaired development caused by amyloid-β peptide. Brain Res 1124:10–18

    Article  PubMed  CAS  Google Scholar 

  • Mazur-Kolecka B, Golabek A, Nowicki K, Flory M, Frackowiak J (2006) Amyloid-β impairs development of neuronal progenitor cells by oxidative mechanisms. Neurobiol Aging 27:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Mazur-Kolecka B, Cohen IL, Jenkins EC, Kaczmarski W, Flory M, Frackowiak J (2007) Altered development of neuronal progenitor cells after stimulation with autistic blood sera. Brain Res 1168C:11–20

    Article  Google Scholar 

  • McGinnis WR (2005) Oxidative stress in autism. Altern Ther Health Med 11:19–25

    PubMed  Google Scholar 

  • Miller MT, Stromland K, Ventura L, Johansson M, Bandim JN, Gillberg C (2005) Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int Dev Neurosci 23:201–219

    Article  Google Scholar 

  • Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC (2005) Increased excretion of lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73:379–384

    Article  PubMed  CAS  Google Scholar 

  • Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Phillips TM (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 49:597–606

    Article  PubMed  CAS  Google Scholar 

  • Pathye U (2003) Excess dietary iron is the root cause for increase in childhood autism and allergies. Med Hypotheses 61:220–222

    Article  Google Scholar 

  • Perera TD, Coplan JD, Lisanby SH, Lipira CM, Arif M, Carpio C, Spitzer G, Santarelli L, Scharf B, Hen R, Rosoklija G, Sackeim HA, Dwork AJ (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27:4894–4901

    Article  PubMed  CAS  Google Scholar 

  • Polleux F, Lauder J (2004) Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res 10:303–317

    Article  Google Scholar 

  • Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schröter F, Ninnemann O, Siegert E, Bendix I, Brüstle O, Nitsch R, Zipp F, Aktas O (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 4:385–394

    Article  Google Scholar 

  • Rola R, Zou Y, Huang TT, Fishman K, Baure J, Rosi S, Milliken H, Limoli CL, Fike JR (2007) Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med 42:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Verdugo JM-G, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Kitagawa K, Yagita Y, Sugiura S, Omura-Matsuoka E, Tanaka S, Matsushita K, Okano H, Tsujimoto Y, Hori M (2006) Bcl2 enhances survival of newborn neurons in the normal and ischemic hippocampus. J Neurosci Res 84:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Sergent-Tanguy S, Michel DC, Neveu I, Naveilhan P (2006) Long-lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin(+)/GFAP(−) cells in cell proliferation. J Neurosci Res 83:1515–1524

    Article  PubMed  CAS  Google Scholar 

  • Skalnikova H, Halada P, Vodicka P, Motlik J, Rehulka P, Hørning O, Chmelik J, Nørregaard JO, Kovarova H (2007) A proteomic approach to studying the differentiation of neural stem cells. Proteomics 7:1825–1838

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97:10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Tsai SJ (2005) Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med Hypotheses 5:79–82

    Article  Google Scholar 

  • Wang Y-Y, Deng X, Xu L, Gao F, Flagg T, May WS (2008) Bcl2 enhances induced hematopoietic differentiation of murine embryonic stem cells. Exp Hematol 36:128–139

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia PM (2005) Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism? Int J Dev Neurosci 23:75–83

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Kong Y, Yang S, Li M, Wen J, Li L (2007) Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation. Cell Res 17:73–79

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by funds provided by the New York State Office of Mental Retardation and Developmental Disabilities (NYS OMRDD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena Mazur-Kolecka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur-Kolecka, B., Cohen, I.L., Jenkins, E.C. et al. Sera from Children with Autism Alter Proliferation of Human Neuronal Progenitor Cells Exposed to Oxidation. Neurotox Res 16, 87–95 (2009). https://doi.org/10.1007/s12640-009-9052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9052-y

Keywords

Navigation