Skip to main content
Log in

The Mitochondrial ATP-Sensitive Potassium Channel Blocker 5-Hydroxydecanoate Inhibits Toxicity of 6-Hydroxydopamine on Dopaminergic Neurons

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The neurotoxin 6-hydroxydopamine is commonly used in models of Parkinson’s disease, and a potential factor in the pathogenesis of the disease. However, the mechanisms responsible for 6-hydroxydopamine-induced dopaminergic degeneration have not been totally clarified. Reactive oxygen species (ROS) derived from 6-OHDA uptake and intraneuronal autooxidation, extracellular 6-OHDA autooxidation, and microglial activation have been involved. The mitochondrial implication is controversial. Mitochondrial ATP-sensitive K (mitoK(ATP)) channels may provide a convergent target that could integrate these different mechanisms. We observed that in primary mesencephalic cultures and neuron-enriched cultures, treatment with the mitoK(ATP) channel blocker 5-hydroxydecanoate, inhibits the dopaminergic degeneration induced by low doses of 6-OHDA. Furthermore, 5-hydroxydecanoate blocks the 6-OHDA-induced decrease in mitochondrial inner membrane potential and inhibits 6-OHDA-induced generation of superoxide-derived ROS in dopaminergic neurons. The results suggest that low doses of 6-OHDA may generate low levels of ROS through several mechanisms, which may be insufficient to induce neuron death. However, they could act as a trigger to activate mitoK(ATP) channels, thereby enhancing ROS production and the subsequent dopaminergic degeneration. Furthermore, the present study provides additional data for considering mitoK(ATP) channels as a potential target for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad F, Maroto R, López MG, Sánchez-García P, García AG (1995) Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. Eur J Pharmacol 293:55–64

    Article  PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence. Nat Med 10:S18–S25

    Article  PubMed  Google Scholar 

  • Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RKH (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    Article  PubMed  CAS  Google Scholar 

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074

    Article  PubMed  CAS  Google Scholar 

  • Avshalumov MV, Rice ME (2003) Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc Natl Acad Sci USA 100:11729–11734

    Article  PubMed  CAS  Google Scholar 

  • Avshalumov MV, Chen BT, Marshall SP, Peña DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744–2750

    PubMed  CAS  Google Scholar 

  • Avshalumov MV, Chen BT, Koós T, Tepper JM, Rice ME (2005) Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 25:4222–4231

    Article  PubMed  CAS  Google Scholar 

  • Berretta N, Freestone PS, Guatteo E, de Castro D, Geracitano R, Bernardi G, Mercuri NB, Lipski J (2005) Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro. Neurotoxicology 26:869–881

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283:193–196

    Article  PubMed  CAS  Google Scholar 

  • Brown PC, Sokolove PM, McCann DJ, Stevens JL, Jones TW (1996) Induction of a permeability transition in rat kidney mitochondria by pentachlorobutadienyl cysteine: a beta-lyase-independent process. Arch Biochem Biophys 331:225–231

    Article  PubMed  CAS  Google Scholar 

  • Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T (2004) Targeting mitochondrial ATP-sensitive potassium channels-a novel approach to neuroprotection. Brain Res Brain Res Rev 46:282–294

    Article  PubMed  CAS  Google Scholar 

  • Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295:H874–H882

    Article  PubMed  CAS  Google Scholar 

  • Dodel RC, Du Y, Bales KR, Ling Z, Carvey PM, Paul SM (1999) Caspase-3-like proteases and 6-hydroxydopamine induced neuronal cell death. Brain Res Mol Brain Res 64:141–148

    Article  PubMed  CAS  Google Scholar 

  • Facundo HT, Carreira RS, de Paula JG, Santos CC, Ferranti R, Laurindo FR, Kowaltowski AJ (2005) Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity. Free Radic Biol Med 40:469–479

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003a) Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. FASEB J 17:1957–1959

    PubMed  CAS  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2003b) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23:1228–1236

    PubMed  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082

    PubMed  CAS  Google Scholar 

  • Gáspár T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW (2008) ROS-independent preconditioning in neurons via activation of mitoK(ATP) channels by BMS-191095. J Cereb Blood Flow Metab 28:1090–1103

    Article  PubMed  CAS  Google Scholar 

  • Glinka YY, Youdim MB (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 292:329–332

    PubMed  CAS  Google Scholar 

  • Glinka Y, Tipton KF, Youdim MB (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem 66:2004–2010

    PubMed  CAS  Google Scholar 

  • Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    PubMed  CAS  Google Scholar 

  • Gonzalez-Hernandez T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Perez-Delgado M, Rodriguez M (2004) Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 479:198–215

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  PubMed  CAS  Google Scholar 

  • Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    PubMed  CAS  Google Scholar 

  • Han J, Kim N, Park J, Seog DH, Joo H, Kim E (2002) Opening of mitochondrial ATP-sensitive potassium channels evokes oxygen radical generation in rabbit heart slices. J Biochem 131:721–727

    PubMed  CAS  Google Scholar 

  • Hanley PJ, Daut J (2005) K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol 39:17–50

    Article  PubMed  CAS  Google Scholar 

  • Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm Suppl 50:79–88

    PubMed  CAS  Google Scholar 

  • Irwin I, Langston JW (1995) Endogenous toxins as potential etiologic agents in Parkinson’s disease. In: Ellenberg JH, Koller WC, Langston JW (eds) Etiology of Parkinson’s disease. Marcel Dekker Inc.., New York, pp 153–201

    Google Scholar 

  • Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm 46:297–314

    CAS  Google Scholar 

  • Kawabata H, Ryomoto T, Ishikawa K (2001) Role of cardiac ATP-sensitive K+ channels induced by HMG CoA reductase inhibitor in ischemic rabbit hearts. Hypertens Res 24:573–577

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y (2005a) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45:860–866

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y (2005b) Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension 45:438–444

    Article  PubMed  CAS  Google Scholar 

  • Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87:969–980

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Agarwal AK, Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64:1703–1707

    Article  PubMed  CAS  Google Scholar 

  • Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron, dioxygen—their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1316:160–168

    PubMed  Google Scholar 

  • Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Gutterman DD (2002) The coronary circulation in diabetes: influence of reactive oxygen species on K+ channel-mediated vasodilation. Vascul Pharmacol 38:43–49

    Article  PubMed  CAS  Google Scholar 

  • Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    PubMed  CAS  Google Scholar 

  • Luthman J, Fredriksson A, Sundstrom E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33:267–277

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304:539–549

    Article  PubMed  CAS  Google Scholar 

  • McCullough JR, Normandin DE, Conder ML, Sleph PG, Dzwonczyk S, Grover GJ (1991) Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res 69:949–958

    PubMed  CAS  Google Scholar 

  • McRitchie DA, Hardman CD, Halliday GM (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol 364:121–150

    Article  PubMed  CAS  Google Scholar 

  • Michel PP, Ruberg M, Agid G (1997) Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside. J Neurochem 69:1459–1507

    Google Scholar 

  • Minners J, Lacerda L, Yellon DM, Opie LH, McLeod CJ, Sack MN (2007) Diazoxide-induced respiratory inhibition—a putative mitochondrial K(ATP) channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem 294:11–18

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Yamanaka Y (2000) Block of cardiac ATP-sensitive K(+) channels reduces hydroxyl radicals in the rat myocardium. Arch Biochem Biophys 378:195–200

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Jackson-Lewis V (1998) Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr Opin Neurol 11:335–339

    Article  PubMed  CAS  Google Scholar 

  • Ramasarma T (1982) Generation of H2O in biomembranes. Biochim Biophys Acta 694:69–93

    PubMed  CAS  Google Scholar 

  • Reinhardt R, Manaenko A, Guenther A, Franke H, Dickel T, Garcia de Arriba S, Muench G, Schneider D, Wagner A, Illes P (2003) Early biochemical and histological alterations in rat corticoencephalic cell cultures following metabolic damage and treatment with modulators of mitochondrial ATP-sensitive potassium channels. Neurochem Int 43:563–571

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103:145–156

    PubMed  CAS  Google Scholar 

  • Rogers JH (1992) Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 587:203–210

    Article  PubMed  CAS  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    Article  PubMed  CAS  Google Scholar 

  • Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240

    Article  CAS  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  PubMed  CAS  Google Scholar 

  • Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras A, Muñoz-Patiño A, Labandeira-García JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 107:81–93

    Article  Google Scholar 

  • Sugrue MM, Wang Y, Rideout HJ, Chalmers-Redman RM, Tatton WG (1999) Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem Biophys Res Commun 261:123–1230

    Article  PubMed  CAS  Google Scholar 

  • Thomzig A, Wenzel M, Karschin C, Eaton MJ, Skatchkov SN, Karschin A, Veh RW (2001) Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci 18:671–690

    Article  PubMed  CAS  Google Scholar 

  • Tokube K, Kiyosue T, Arita M (1998) Effects of hydroxyl radicals on KATP channels in guinea-pig ventricular myocytes. Pflugers Arch 437:155–157

    Article  PubMed  CAS  Google Scholar 

  • Wadia JS, Chalmers-Redman RM, Ju WJ, Carlile GW, Phillips JL, Fraser AD, Tatton WG (1998) Mitochondrial membrane potential and nuclear changes in apoptosis caused by serum and nerve growth factor withdrawal: time course and modification by (−)-deprenyl. J Neurosci 18:932–947

    PubMed  CAS  Google Scholar 

  • Wu Y, Blum D, Nissou MF, Benabid AL, Verna JM (1996) Unlike MPP+, apoptosis induced by 6-OHDA in PC12 cells is independent of mitochondrial inhibition. Neurosci Lett 221:69–71

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC, St John PA, Hu G, Wang H, Wakui M (2006) Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 319:155–164

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (1991) Major differences in CNS sulfonylurea receptor distribution between the rat (newborn, adult) and turtle. J Comp Neurol 314:278–289

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi T, Kashii S, Yasuyoshi H, Zhang S, Honda Y, Akaike A (2003) Mitochondrial ATP-sensitive potassium channel: a novel site for neuroprotection. Invest Ophthalmol Vis Sci 44:2750–2756

    Article  PubMed  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    PubMed  CAS  Google Scholar 

  • Zhang HY, McPherson BC, Liu H, Baman TS, Rock P, Yao Z (2002) H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardiomyocytes. Am J Physiol Heart Circ Physiol 282:H1395–H1403

    PubMed  CAS  Google Scholar 

  • Zhang L, Li L, Prabhakaran K, Borowitz JL, Isom GE (2006) Trimethyltin-induced apoptosis is associated with upregulation of inducible nitric oxide synthase and Bax in a hippocampal cell line. Toxicol Appl Pharmacol 216:34–43

    Article  PubMed  CAS  Google Scholar 

  • Zhang GX, Lu XM, Kimura S, Nishiyama A (2007) Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res 76:204–212

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K, Abe H (2002) Localization of pore-forming subunit of the ATP-sensitive K(+)-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101:23–32

    Article  PubMed  CAS  Google Scholar 

  • Zini S, Tremblay E, Pollard H, Moreau J, Ben-Ari Y (1993) Regional distribution of sulfonylurea receptors in the brain of rodent and primate. Neuroscience 55:1085–1091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Spanish Ministry of Education (MEC, BFU2006-07414/BFI), Spanish Ministry of Health (RD06/0010/0013 and Ciberned), and Galician Government (XUGA). The authors thank Pilar Aldrey for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Labandeira-Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Pallares, J., Parga, J.A., Joglar, B. et al. The Mitochondrial ATP-Sensitive Potassium Channel Blocker 5-Hydroxydecanoate Inhibits Toxicity of 6-Hydroxydopamine on Dopaminergic Neurons. Neurotox Res 15, 82–95 (2009). https://doi.org/10.1007/s12640-009-9010-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9010-8

Keywords

Navigation