Skip to main content

Advertisement

Log in

Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

Toxoplasmosis is one of the widest spread parasitic infections which is caused by Toxoplasma gondii protozoon. Many experimental studies have evaluated the effect of aminoguanidine upon parasitic load and inflammatory process. However, few reports have illustrated the impact of combining aminoguanidine with spiramycin in the treatment of toxoplasmosis. Therefore, our study aimed to explore the possible effects of spiramycin used alone and combined with aminoguanidine against the avirulent (ME49) Toxoplasma gondii strain in experimental toxoplasmosis. Fifty-five Swiss albino mice were included in the study and were divided into five groups: (GI): non-infected control group; (GII): infected untreated control group; (GIII): infected- spiramycin treated group; (GIV): infected-aminoguanidine treated group; (GV): infected and received combination of spiramycin and aminoguanidine. Obtained results exhibited a significant increase in brain cysts numbers in aminoguanidine treated groups compared to infected untreated control groups. Histopathological studies denoted that combination between spiramycin and aminoguanidine improved the pathological features only in liver and heart tissues of the studied groups. Moreover, it was noticed that spiramycin administered alone had no effect on nitric oxide expression, whereas its combination with aminoguanidine had an inhibitory effect on inducible nitric oxide synthase enzyme in brain, liver and heart tissues of different study groups. In conclusion, the combination of spiramycin and aminoguanidine significantly reduced the parasitic burden, yet, it failed to resolve the pathological sequels in brain tissues of Toxoplasma gondii infected mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data and materials used to support the findings of this study are included within this article.

References

  • Ahmed JH, Safar EH, Omar SH, Khattab HM, el-Kholy HS, (1996) Toxoplasma antibodies in clinically suspected cases of toxoplasmosis. J Egypt Soc Parasitol 26:653–659

    CAS  PubMed  Google Scholar 

  • Alday PH, Doggett JS (2017) Drugs in development for toxoplasmosis: advances, challenges, and current status. Drug Des Devel Ther 11:273–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armonk N (2013) IBM SPSS Statistic for windows version 22.0. 2013

  • Atmaca HT, Kul O, Karakuş E, Terzi OS, Canpolat S, Anteplioğlu T (2014) Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience 269:184–191

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C, Rollinghoff M, Diefenbach A (2000) The role of nitric oxide in innate immunity. Immunol Rev 173:17–26

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YH (2003) Biostatistics 102: quantitative data—parametric & non-parametric tests. Singap Med J 44(8):391–396

    CAS  Google Scholar 

  • Chew WK, Segarra I, Ambu S, Mak JW (2012) Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob Agents Chemother 56(4):1762–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conover WJ (1999) Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons Inc, New York, pp 428–433

    Google Scholar 

  • Corbett JA, Tilton RG, Chang K, Hasan KS, Ido Y, Wang JL, Sweetland MA, Lancaster JR Jr, Williamson JR, McDaniel ML (1992) Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552–556

    Article  CAS  PubMed  Google Scholar 

  • Courderot-Masuyer C, Dalloz F, Rochette MV, L, (1999) Antioxidant properties of aminoguanidine. Fundam Clin Pharmacol 13:535–540

    Article  CAS  PubMed  Google Scholar 

  • Crespo M, Quereda C, Pascual J, Rivera M, Clemente L, Cano T (2000) Patterns of sulfadiazine acute nephrotoxicity. Clin Nephrol 54(1):68–72

    CAS  PubMed  Google Scholar 

  • Czarnewski P, Araujo ECB, Oliveira MC, Mineo TWP, Silva NM (2017) Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression. Front Cell Infect Microbiol 7:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dincel GC, Atmaca HT (2015) Nitric oxide production increases during Toxoplasma gondii encephalitis in mice. Exp Parasitol 156:104–112

    Article  CAS  PubMed  Google Scholar 

  • Djurković-Djaković O, Milenković V, Nikolić A, Bobić B, Grujić J (2002) Efficacy of atovaquone combined with clindamycin against murine infection with a cystogenic (Me49) strain of Toxoplasma gondii. J Antimicrob Chemother 50(6):981–987

    Article  PubMed  Google Scholar 

  • Drury RAB, Wallington EA (1980) Carleton’s histological technique, 5th edn. Oxford University Press, Oxford, New York, Toronto

    Google Scholar 

  • Ducournau C, Moiré N, Carpentier R, Cantin P, Herkt C, Lantier I, Betbeder D, Dimier-Poisson I (2020) Effective nanoparticle-based nasal vaccine against latent and congenital toxoplasmosis in sheep. Front Immunol 11:2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Fakhry Y, Achbarou A, Desportes I, Mazier D (1998) Encephalitozoon intestinalis: humoral responses in interferon-c receptor knockout mice infected with a microsporidium pathogenic in AIDS patients. Exp Parasitol 89:113–121

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NM, Aly EM (2014) Toxoplasma gondii infection can induce retinal DNA damage: an experimental study. Int J Ophthalmol 7(3):431–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza EY, P´erez-Arellano JL, Carranza C, Coll´ıa F, Muro A, (2002) In vivo inhibition of inducible nitric oxide synthase decreases lung injury induced by Toxocara canis in experimentally infected rats. Parasite Immunol 24(11–12):511–520

    Article  CAS  PubMed  Google Scholar 

  • Etewa SE, Abo El-Maaty DA, El-Azeem A, Mai E, El-Shafey MA, Sarhan MH, Saad E (2017) In vivo assessment of the effects of methotrexate on latent toxoplasmosis. J Egypt Soc Parasitol 47(3):589–598

    Google Scholar 

  • Etewa SE, El-Maaty DAA, Hamza RS, Metwaly AS, Sarhan MH, Abdel-Rahman SA, El-Shafey MA (2018) Assessment of spiramycin-loaded chitosan nanoparticles treatment on acute and chronic toxoplasmosis in mice. J Parasit Dis 42(1):102–113

    Article  PubMed  Google Scholar 

  • Farag TI, Salama MA, Yahia SH, Elfeqy RA (2019) Therapeutic efficacy of Thymus vulgaris and Myristica fragrance houtt (Nutmeg) ethanolic extract against toxoplasmosis in murine model. J Egypt Soc Parasitol 49(1):73–79

    Article  Google Scholar 

  • FarahatAllam A, Shehab AY, Fawzy HMNM, Farag HF, Elsayed Y, Abd El-Latif NF (2020) Effect of nitazoxanide and spiramycin metronidazole combination in acute experimental toxoplasmosis. Heliyon 6(4):e03661

    Article  PubMed  PubMed Central  Google Scholar 

  • Faucher B, Moreau J, Zaegel O, Frank J, Piarroux P (2011) Failure of conventional treatment with pyrimethamine and sulfadiazine for secondary prophylaxis of cerebral toxoplasmosis in a patient with AIDS. J Antimicrob Chemother 66:1654–1656

    Article  CAS  PubMed  Google Scholar 

  • Filice GA, Pomeroy C (1991) Effect of clindamycin on pneumonia from reactivation of toxoplasma gondii infection in mice. Antimicrob Agents Chemother 35:780–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco PS, Gomes AO, Barbosa BF, Angeloni MB, Silva NM, Teixeira-Carvalho A, Martins-Filho OA, Silva DAO, Mineo JR, Ferro EAV (2011) Azithromycin and spiramycin induce anti-inflammatory response in human trophoblastic (BeWo) cells infected by Toxoplasma gondii but are able to control infection. Placenta 32(11):838–844

    Article  CAS  PubMed  Google Scholar 

  • Giarcia LS, Bruckner DA (1977) Macroscopic and microscopic examination of fecal specimens. In: Giboda MN, Vokurkova P, Kopacek O (eds) Diagnostic medical parasitology, 3rd edn. ASM Press, Washington, pp 608–649

    Google Scholar 

  • Goldstein NS, Bosler D (2007) An approach to interpreting immunohistochemical stains of adenocarcinoma in small needle core biopsy specimens: the impact of limited specimen size. Am J Clin Pathol 2:273–281

    Article  Google Scholar 

  • Ibrahim HM, Bannai H, Xuan X, Nishikawa Y (2009) Toxoplasma gondii cyclophilin 18-mediated production of nitric oxide induces bradyzoite conversion in a CCR5-dependent manner. Infect Immun 77(9):3686–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelski DM, Remington JS (1993) Toxoplasma gondii is an intracellular protozoan parasite: toxoplasmosis in the non-AIDS immunocompromised host. Curr Clin Top Infect 13:322–356

    CAS  Google Scholar 

  • Hayashi S, Chan CC, Gazzinelli RT, Pham NT, Cheung MK, Roberge FG (1996) Protective role of nitric oxide in ocular toxoplasmosis. Br J Ophthalmol 80(7):644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang KM, Lee GS, Lee JH, Choi IW, Shin DW, Lee YH (2004) Effects of iNOS inhibitor on IFN-γ production and apoptosis of splenocytes in genetically different strains of mice infected with Toxoplasma gondii. Korean J Parasitol 42(4): 175- –183

  • Khan IA, Schwartzman JD, Matsuura T (1997) Dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proceed Nat Acad Sci USA 25:13955–13960

    Article  Google Scholar 

  • Kołodziej-Sobocińska M, Dziemian E, Machnicka-Rowińska B (2006) Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” (C57BL/6) and “high responders” (BALB/c) mice. Parasitol Res 99(2):194–196

    Article  PubMed  Google Scholar 

  • Leslie E, Geoffrey J, James M (1991) Statistical analysis. In: Kirkpatrick LA, Feeney BC (eds) Interpretation and uses of medical statistics, 4th edn. Oxford Scientific Publications, Oxford, pp 411–416

    Google Scholar 

  • Ma CI, Diraviyam K, Maier ME, Sept D, Sibley LD (2013) Synthetic chondramide A analogues stabilize filamentous actin and block invasion by Toxoplasma gondii. J Nat Prod 76:1565–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud AE, Attia RA, Eldeek HE, Farrag HMM, Makboul R (2016) Polymerase chain reaction detection and inducible nitric-oxide synthase expression of Leishmania major in mice inoculated by two different routes. Trop Parasitol 6(1):42–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud MF, Zakaria S, Fahmy A (2015) Can Chronic Nitric Oxide Inhibition Improve Liver and Renal Dysfunction in Bile Duct Ligated Rats? Adv Pharmacol Sci 2015:298792

    PubMed  PubMed Central  Google Scholar 

  • Mantas J (2002) Statistical methods. Stud Health Technol Inform 65:136–147

    PubMed  Google Scholar 

  • McCarthy JS, Wortmann GW, Kirchhoff LV (2014) Drugs for protozoal infections other than malaria. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. 8th edn, by John E. Bennett, Raphael, Dolin, Martin, J. Blaser, Amesterdam, the Netherlanda: Elservier

  • Nassef NA, El-Kersh WM, El-Nahas NS, El-Din SAS, Oshiba SF, Nosseir MM (2014) Parasitological, histopathological, and immunohistochemical assessment of nitric oxide synthase inhibitor: aminoguanidine versus albendazole in the treatment of experimental murine toxocariasis. Menoufia Med J 27(1):103

    Article  Google Scholar 

  • Nickel JC, True LD, Krieger JN, Berger RE, Boag AH, Young ID (2001) Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU Int 87(9):797–805

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Marmansari D, Li ZM, Adilbish A, Canko S, Ueno A, Shono H, Furuoka H, Igarashi M (2013) A novel dense granule protein, GRA22, is involved in regulating parasite egress in Toxoplasma gondii. Mol Biochem Parasit 189(1–2):5–13

    Article  CAS  Google Scholar 

  • Pereira AV, Góis MB, Lera KRJL, Falkowski-Temporini GJ, Massini PF, Drozino RN, Pavanelli WR (2017) Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment. Patholo Res Pract 213(1):50–57

    Article  Google Scholar 

  • Peyron F, Mc Leod R, Ajzenberg D, Contopoulos- Ioannidis D, Kieffer F, Mandelbrot L, Sibley LD, Pelloux H, Villena I, Wallon M, Montoya GJ (2017) Congenital toxoplasmosis in France and the United States: one parasite, two diverging approaches. PLoS Negl Trop Dis 11(2):e0005222

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajan TV, Porte P, Keefer YJA, L, Shultz, LD, (1996) Role of nitric oxide in host defense against an extracellular, metazoan parasite. Brugia malayi Infect Immun 64(8):3351–3353

    Article  CAS  PubMed  Google Scholar 

  • Rayan HZ, Wagih HM, Atwa MM (2011) Efficacy of Black Seed Oil from Nigella sativa against Murine Infection with Cysts of Me49 Strain of Toxoplasma gondii. PUJ 4(2):165–176

    Google Scholar 

  • Remington JS, Klein JO (2010) Infectious diseases of the fetus and newborn infant. Saunders, Philadelphia, PA, pp 918–1041

    Google Scholar 

  • Rosowsky A, Papoulis AT, Queener SF (1998) 2,4-Diamino-67-dihydro-5H-cyclopenta[d]pyrimidine analogues of trimethoprim as inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. J Med Chem 41(6):913–918

    Article  CAS  PubMed  Google Scholar 

  • Scharton-Kersten TM, Yap G, Magram J, Sher A (1997) Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 185(7):1261–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AF, Oliveira FCR, Leite JS, Mello MFV, Brandão FZ, Leite RIJCK, FrazãoTeixeira E, Lilenbaum W, Fonseca ABM, Ferreira AMR (2013) Immunohistochemical identification of Toxoplasma gondii in tissues from Modified Agglutination Test positive sheep. Vet Parasitol 191(4):347–352

    Article  CAS  PubMed  Google Scholar 

  • Tagel M, Lassen B, Viltrop A, Jokelainen P (2019) Large-scale epidemiological study on Toxoplasma gondii seroprevalence and risk factors in sheep in Estonia: Age, farm location, and breed associated with seropositivity. Vector Borne Zoonotic Dis 19:421–429

    Article  PubMed  Google Scholar 

  • Tahir S, Badshah A, Hussain RA (2015) Guanidines from “toxic substances” to compounds with multiple biological applications–detailed outlook on synthetic procedures employed for the synthesis of guanidines. Bioorg Chem 59:39–79

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J, Kadota J, Takizawa H (2004) Clinical implications of the immunomodulatory effects of macrolides. Am J Med 117(9):5–11

    Google Scholar 

  • Valentini P, Buonsenso D, Barone G, Serranti D, Calzedda R, Ceccarelli M, Speziale D, Ricci R, Masini L (2015) Spiramycin/cotrimoxazole versus pyrimethamine/sulfonamide and spiramycin alone for the treatment of toxoplasmosis in pregnancy. J Perinatol 35(2):90–94

    Article  CAS  PubMed  Google Scholar 

  • Wei HX, Wei SS, Lindsay DS, Peng HJ (2015) A Systematic review and meta-analysis of the efficacy of anti-Toxoplasma gondii medicines in humans. PLoS ONE 10(9):e0138204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeromski J, Boczoń K, Wandurska-Nowak E, Mozer-Lisewska I (2005) Effect of aminoguanidine and albendazole on inducible nitric oxide synthase (iNOS) activity in T.spiralis-infected mice muscles. Folia Histochem Cytobiol 43(3):157:159

Download references

Acknowledgements

We would like to thank Dr Heba O. Abdelal, Research associate and Data innovation Coordinator at LIS cross- national data centre in Luxembourg, for her assistance in the statistical analysis.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Marwa Omar conceptualized the idea. Study design and material preparation were performed by Marwa Omar, Beessa E. Abaza, Esraa Mousa, Shereen M. Ibrahim and Tahani I. Farag. All authors participated in the experimental work. Hayam E. Rashed evaluated the pathological and immunohistochemical results. The first draft of the manuscript was written by Marwa Omar and all authors commented of previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marwa Omar.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, M., Abaza, B.E., Mousa, E. et al. Effect of spiramycin versus aminoguanidine and their combined use in experimental toxoplasmosis. J Parasit Dis 45, 1014–1025 (2021). https://doi.org/10.1007/s12639-021-01396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-021-01396-9

Keywords

Navigation