Skip to main content
Log in

Numerical Investigation of Perovskite and u-CIGS Based Tandem Solar Cells Using Silvaco TCAD Simulation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a numerical model is designed to evaluate the performances of a two-terminal tandem Perovskite-CIGS solar cell. Tandem perovskite solar cells (TPSCs) are a type of device that has attracted great attention for their scalability, low cost, and high efficiency. In order to validate the investigated model, the obtained data have been compared with the fabricated cell. Since a tandem cell is quite complex, to obtain realistic results, the study was conducted in several steps by optimizing first the perovskite solar cell, then performing ultrathin CIGS solar cell, and finally the tandem structure. Intrinsic organic material Methylammonium lead iodide (CH3NH3PbI3) was used as an absorber layer and its thickness has been optimized. The effect of adding an anti-reflective coating (ARC) on the top of ITO front contact on PSC device performance was studied too. The cell efficiency of the optimized perovskite cells was achieved by about 16.13%. For a good substrate, the ultrathin CIGS (u-CIGS) solar cell was calibrated to the fabricated cell characteristics. Finally, a two-terminal perovskite/CIGS tandem device was successfully simulated with an efficiency of up to 20.84%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All the data and materials are available in the manuscript.

References

  1. Cartlidge E (2007) Bright outlook for solar cells. Phys World 20(7):20. http://physicsworld.com/cws/article/print/30345

  2. Green MA (1984) Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes. IEEE Trans Electron Devices 31(5):671–678

    Article  Google Scholar 

  3. Yu ZJ, Carpenter JV, Holman CZ (2018) Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nat Energy 3(9):747–753

    Article  CAS  Google Scholar 

  4. Boukortt NE, Islam, Hadri B (2018) Simulation of electrical characteristics of PERC solar cells. J Electron Mater 47(10):5825–5832

    Article  CAS  Google Scholar 

  5. Green MA (2009) The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog Photovolt Res Appl 17(3):183–189

    Article  CAS  Google Scholar 

  6. Alharbi FH, Kais S (2015) Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew Sust Energy Rev 43:1073–1089

    Article  Google Scholar 

  7. Boukortt NEl, Patanè S, Abdulraheem YM (2020) Numerical investigation of CIGS thin-film solar cells. Sol Energy 204:440–447

    Article  CAS  Google Scholar 

  8. Punathil P, Artegiani E, Zanetti S, Lozzi L, Kumar V, Romeo A (2022) A simple method for Ge incorporation to enhance performance of low temperature and non-vacuum based CZTSSe solar cells. Sol Energy 236:599–607

    Article  CAS  Google Scholar 

  9. Boukortt NElI, Adouane M, AlHammadi R (2021) High-performance ultrathin Cu (In, Ga) Se2 solar cell optimized by silvaco tools. Sol Energy 228:282–289

    Article  CAS  Google Scholar 

  10. Jošt M, Köhnen E, Al-Ashouri A, Bertram T, Tomšič Åpela, Magomedov A, Kasparavicius E et al (2022) Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Lett 7:1298–1307

    Article  Google Scholar 

  11. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467):395–398

    Article  CAS  Google Scholar 

  12. Bhattacharya RN, Balcioglu A, Ramanathan K, Batchelor WK, Ahrenkiel RK (2000) Thin film CuIn {sub 1 {minus} x} Ga {sub x} Se-based solar cells prepared from solution-based precursors. No. NREL/CP-590-28415. National Renewable Energy Lab. (NREL), Golden

  13. Jošt M, Al-Ashouri A, Lipovšek B, Bertram T, Schlatmann R, Kaufmann CA, Topič M, Albrecht S (2020) Perovskite/CIGS tandem solar cells-can they catch up with perovskite/c-Si tandems? In: 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, pp 0763–0766

  14. Kumar A, Singh S, Mustafa KA, Mohammed, Shalan AE (2021) Computational modelling of two terminal CIGS/perovskite tandem solar cells with power conversion efficiency of 23.1%. Eur J Inorg Chem 2021(47):4959–4969

  15. Fang H-H, Wang F, Adjokatse S, Zhao N, Loi MA (2016) Photoluminescence enhancement in formamidinium lead iodide thin films. Adv Funct Mater 26(26):4653–4659

    Article  CAS  Google Scholar 

  16. Hoye RLZ, Fakharuddin A, Congreve DN, Wang J, Schmidt-Mende L (2020) Light emission from perovskite materials. APL Mater 8(7):070401

    Article  CAS  Google Scholar 

  17. Gao C, Liu J, Liao C, Ye Q, Zhang Y, He X, Guo X, Mei J, Lau W (2015) Formation of organic–inorganic mixed halide perovskite films by thermal evaporation of PbCl 2CH 3 NH 3 I compounds. RSC Adv 5(33):26175–26180

    Article  CAS  Google Scholar 

  18. Ma Q, Huang S, Wen X, Green MA, Anita WY, Ho-Baillie (2016) Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv energy Mater 6(7):1502202

    Article  Google Scholar 

  19. Erkılıç U, Ji HG, Nishibori E, Ago H (2020) One-step vapour phase growth of two-dimensional formamidinium-based perovskite and its hot carrier dynamics. Phys Chem Chem Phys 22(37):21512–21519

    Article  Google Scholar 

  20. Moser T, Artuk K, Jiang Y, Feurer T, Gilshtein E, Tiwari AN, Fu F (2020) Revealing the perovskite formation kinetics during chemical vapour deposition. J Mater Chem A 8(42):21973–21982

    Article  CAS  Google Scholar 

  21. Hodes G (2013) Perovskite-based solar cells. Science 342(6156):317–318

    Article  CAS  Google Scholar 

  22. Li Y, Zhao Y, Chen Q, Yang Y, Liu Y, Hong Z, Liu Z et al (2015) Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J Am Chem Soc 137(49):15540–15547

    Article  CAS  Google Scholar 

  23. Cho A-N, Nam-Gyu Park (2017) Impact of interfacial layers in perovskite solar cells. ChemSusChem 10(19):3687–3704

    Article  CAS  Google Scholar 

  24. van Eerden M, Jaysankar M, Hadipour A, Merckx T, Schermer JJ, Aernouts T, Poortmans J, Paetzold UW (2017) Optical analysis of planar multicrystalline perovskite solar cells. Adv Opt Mater 5(18):1700151

    Article  Google Scholar 

  25. Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Hao Y (2018) Device simulation of inverted CH3NH3PbI3 – xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Sol Energy 169:11–18

    Article  CAS  Google Scholar 

  26. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):1–7

    Article  Google Scholar 

  27. Lee L, Teuscher MMJ, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107):643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  28. Wang K-C, Jeng J-Y, Shen P-S, Chang Y-C, Diau EW-G, Tsai C-H, Chao T-Y et al (2014) P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci Rep 4(1):1–8

    Google Scholar 

  29. Zheng J, Lau CFJ, Mehrvarz H, Ma F-J, Jiang Y, Deng X, Soeriyadi A et al (2018) Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ Sci 11(9):2432–2443

    Article  CAS  Google Scholar 

  30. Yun S, Qin Y, Uhl AR, Vlachopoulos N, Yin M, Li D, Han X, Hagfeldt A (2018) New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci 11(3):476–526

    Article  CAS  Google Scholar 

  31. Li Y, Li H, Zhong C, Sini G, Brédas BJ-L (2017) Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. NPJ Flex Electron 1(1):1–8. https://doi.org/10.1038/s41528-017-0002-0

    Article  CAS  Google Scholar 

  32. Lontchi J, Zhukova M, Kovacic M, Krc J, Chen W-C, Edoff M, Bose S et al (2020) Optimization of back contact grid size in Al 2 O 3-rear-passivated ultrathin CIGS PV cells by 2-D simulations. IEEE J Photovolt 10(6):1908–1917

    Article  Google Scholar 

  33. Jacobsson TJ, Hultqvist A, Svanström S, Riekehr L, Cappel UB, Unger E, Johansson EMJ, Edoff M, Boschloo G (2020) 2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration. Solar Energy 207:270–288

  34. Joel J (2014) Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells

  35. User Guide Manual (2019) ATLAS Version 5.28.1.R USA. Silvaco Inc

  36. Gill WD (1972) Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. J Appl Phys 43(12):5033–5040

    Article  Google Scholar 

  37. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10(5):365–377

    Article  CAS  Google Scholar 

  38. Boukortt NE, Islam, Patané S (2019) High-Efficiency Cu (In 1-x Ga x) Se 2 solar cell investigation with single layer antireflection coating of MgF 2. In: 2019 2nd International Conference on Smart Grid and Renewable Energy (SGRE). IEEE, pp 1–5

  39. Shanmugam N, Pugazhendhi R, Elavarasan RM, Kasiviswanathan P, Das N (2020) Anti-reflective coating materials: a holistic review from PV perspective. Energies 13(10):2631

    Article  CAS  Google Scholar 

  40. Boukortt NElI, Patanè S, Adouane M, AlHammadi R (2021) Numerical optimization of ultrathin CIGS solar cells with rear surface passivation. Sol Energy 220:590–597

    Article  CAS  Google Scholar 

  41. Boukortt NEl, AlAmri AM, Bouhjar F, Bouhadiba K (2021) Investigation and optimization of ultrathin Cu (In, Ga) Se2 solar cells by using silvaco-TCAD tools. J Mater Sci: Mater Electron 32(16):21525–21538

    CAS  Google Scholar 

Download references

Acknowledgements

This project was partially supported by Kuwait Foundation for the Advancement of Sciences (KFAS) under project codes: PN20-35EE-03. This research work also was partially supported by Semiconductor Laboratory (GE01/08), Kuwait University. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contributions to preparing the manuscript.

Corresponding author

Correspondence to Nour El I. Boukortt.

Ethics declarations

Ethics Approval

On behalf of all authors, the corresponding author states that there is no ethical issues.

Consent to Participate

All the authors have equal contributions to preparing the manuscript.

Consent for Publication

All the authors provide consent for publication.

Conflicts of Interest

On behalf of all authors, the corresponding author states that there are no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukortt, N.E.I., Patanè, S., AlAmri, A.M. et al. Numerical Investigation of Perovskite and u-CIGS Based Tandem Solar Cells Using Silvaco TCAD Simulation. Silicon 15, 293–303 (2023). https://doi.org/10.1007/s12633-022-01960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01960-9

Keywords

Navigation