Skip to main content
Log in

The Influence of Water Content on the Growth of the Hybrid-Silica Particles by Sol-Gel Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper investigates the change in size and morphology of the silica network with the change of water content by sol-gel method. Methyl triethoxysilane (MTES) and tetraethyl orthosilicate (TEOS) were used as co-precursors. The results reveal that the morphology controllable silica network are prepared by changing water content, the size of silica network is in the range in 17–176 nm. There are two ways for the silica nanoparticles to grow in the sol media, condensing with the newly hydrolyzed precursor named monomer-addition model or condensing with the existing silica structure called controlled-aggregation model. As the molar ratio of water/siloxane increases from 1 to 12, the growth process change from the aggregation of oligomers to the condensation between oligomer and hydrolyzed precursor, and the final morphology of silica nanoparticles changes from a network structure to a monodisperse particle structure. When the water content reaches a very high value with the molar ratio of water/siloxane ≥12, the growth process of silica nanoparticles is dominated by the monomer-addition mechanism. The addition of MTES as co-precursor favors the formation of the network structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data are fully available without restriction.

References

  1. Stöber W, Fink A (1968) Controlled growth of Monodisperse silica spheres in the Micron size range. J Colloid Interf Sci 26:62–69

    Article  Google Scholar 

  2. Dourbash A, Motahari S, Omranpour HJJon-cs (2014) Effect of water content on properties of one-step catalyzed silica aerogels via ambient pressure drying 405:135–140

  3. Ramezani M, Vaezi MR, Kazemzadeh A (2015) The influence of the hydrophobic agent, catalyst, solvent and water content on the wetting properties of the silica films prepared by one-step sol–gel method. Appl Surf Sci 326:99–106. https://doi.org/10.1016/j.apsusc.2014.11.013

    Article  CAS  Google Scholar 

  4. Li Z, Cheng X, He S, Huang D, Bi H, Yang H (2014) Preparation of ambient pressure dried MTMS/TEOS co-precursor silica aerogel by adjusting NH4OH concentration. Mater Lett 129:12–15. https://doi.org/10.1016/j.matlet.2014.05.024

    Article  CAS  Google Scholar 

  5. Seraji MM, Sameri G, Davarpanah J, Bahramian AR (2017) The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels. J Colloid Interface Sci 493:103–110. https://doi.org/10.1016/j.jcis.2017.01.014

    Article  CAS  PubMed  Google Scholar 

  6. Cai S, Zhang Y, Zhang H, Yan H, Lv H, Jiang B (2014) Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. ACS Appl Mater Interfaces 6(14):11470–11475. https://doi.org/10.1021/am501972y

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Zhao C, Wang P, Ye L, Luo J, Jiang B (2014) A convenient sol-gel approach to the preparation of nano-porous silica coatings with very low refractive indices. Chem Commun 50(89):13813–13816. https://doi.org/10.1039/c4cc05397d

    Article  CAS  Google Scholar 

  8. Dourbash A, Motahari S, Omranpour H (2014) Effect of water content on properties of one-step catalyzed silica aerogels via ambient pressure drying. J Non-Cryst Solids 405:135–140. https://doi.org/10.1016/j.jnoncrysol.2014.09.013

    Article  CAS  Google Scholar 

  9. Xia B, Yan L, Li Y, Zhang S, He M, Li H, Yan H, Jiang B (2018) Preparation of silica coatings with continuously adjustable refractive indices and wettability properties via sol–gel method. RSC Adv 8(11):6091–6098. https://doi.org/10.1039/c7ra12817g

    Article  CAS  Google Scholar 

  10. Ilkhechi NN, Ghobadi N, Khazaie F, Kaleji BK (2016) The effect of Sn/Si dopant on optical and structural properties of nanostructured zinc oxide thin films. Silicon 10(2):503–508. https://doi.org/10.1007/s12633-016-9480-2

    Article  CAS  Google Scholar 

  11. Ilkhechi NN, Dousi F, Kaleji BK, Salahi E (2014) Optical and structural properties of TiO $$_{\mathbf{2}}$$ 2 nanocomposite doped by Si and cu at high temperature. Opt Quant Electron 47(7):1751–1763. https://doi.org/10.1007/s11082-014-0033-x

    Article  CAS  Google Scholar 

  12. Ilkhechi NN, Ahmadi A, Kaleji BK (2015) Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and cu at high temperature. Opt Quant Electron 47(8):2423–2434. https://doi.org/10.1007/s11082-015-0120-7

    Article  CAS  Google Scholar 

  13. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of Monodispersed hydrosols. Acc Chem Soc 72:4847–4854. https://doi.org/10.1021/ja01167a001‚

    Article  CAS  Google Scholar 

  14. Zhao Y, Li M, Lu Q, Shi ZJL (2008) Superhydrophobic polyimide films with a hierarchical topography: combined replica molding and layer-by-layer assembly. 24 (21):12651-12657

  15. Pereira C, Alves C, Monteiro A, Magén C, Pereira A, Ibarra A, Ibarra M, Tavares P, Araújo J, Blanco GJAam, interfaces (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. 3 (7):2289–2299

  16. Celichowski G, Piwonski I, Cichomski M, Koralewski K, Plaza S, Olejniczak W, Grobelny JJTL (2003) The influence of methyl group content on tribological properties of organo-silica thin films. 14 (3):181–185

  17. Ilkhechi NN, Kaleji BK (2015) Temperature stability and Photocatalytic activity of Nanocrystalline Cristobalite powders with cu dopant. Silicon 9(6):943–948. https://doi.org/10.1007/s12633-015-9363-y

    Article  CAS  Google Scholar 

  18. Ilkhechi NN, Kaleji BK, Mozammel M, Ghobadi N (2016) Effect of cu and Zr co-doped SiO2 nanoparticles on the stability of phases (quartz-Tridymite-Cristobalite) and degradation of methyl Orange at high temperature. Silicon 9(2):293–299. https://doi.org/10.1007/s12633-016-9416-x

    Article  CAS  Google Scholar 

  19. Han Y, Lu Z, Teng Z, Liang J, Guo Z, Wang D, Han M-Y, Yang aW (2017) Unravelling the growth mechanism of silica particles in Stöber method: in-situ seeded growth model. Langmuir 33 (23):5879–5890

  20. Roder A, Kob W, Binder K (2001) Structure and dynamics of amorphous silica surfaces. J Chem Phys 114(17):7602–7614. https://doi.org/10.1063/1.1360257

    Article  CAS  Google Scholar 

  21. Brinker CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Elsevier Science

  22. Matsoukas T, Gulari E (1988) Dynamics of growth of silica particles from Ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. J Colloid Interf Sci 124:252–261

    Article  CAS  Google Scholar 

  23. Matsoukas T, Gulari E (1989) Monomer-addition growth with a slow initiation step: a growth model for silica particles from Alkoxides. J Colloid Interf Sci 132:13–21

    Article  CAS  Google Scholar 

  24. Matsoukas T, Gulari E (1991) Self-sharpening Disrtibutions revisited-Polydispersity in growth by monomer addition. J Colloid Interf Sci 45:557–562

    Article  Google Scholar 

  25. Bogush GH, Zukoski CF (1991) Uniform silica particle precipitation: an aggregative growth model. J Colloid Interf Sci 142:19–34

    Article  CAS  Google Scholar 

  26. Bogush GH, Zukoski CF (1991) Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon Alkoxides. J Colloid Interf Sci 142:1–18

    Article  CAS  Google Scholar 

  27. Carcouet CC, van de Put MW, Mezari B, Magusin PC, Laven J, Bomans PH, Friedrich H, Esteves AC, Sommerdijk NA, van Benthem RA, de With G (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14(3):1433–1438. https://doi.org/10.1021/nl404550d

    Article  CAS  PubMed  Google Scholar 

  28. Wang XD, Shen ZX, Sang T, Cheng XB, Li MF, Chen LY, Wang ZS (2010) Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341(1):23–29. https://doi.org/10.1016/j.jcis.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  29. Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T (2009) Mechanism of formation of uniform-sized silica Nanospheres catalyzed by basic amino acids. Chem Mater 21(15):3719–3729. https://doi.org/10.1021/cm900993b

    Article  CAS  Google Scholar 

  30. Pontoni D, Narayanan T, Rennie AR (2002) Time-resolved SAXS study of nucleation and growth of silica colloids. Langmuir 18(1):56–59

    Article  CAS  Google Scholar 

Download references

Funding

The funding support of the research is from the Petro China Scientific Research and Technology Development Project (2018A-0907)

Author information

Authors and Affiliations

Authors

Contributions

Xijia Zhao conceived and designed the study, performed the experiments, and wrote the paper. Yihan Wang and Bo Jiang reviewed and edited the manuscript. Jianhui Luo, Pingmei Wang, and Peiwen Xiao provided funding and technical support. All authors read and approved the manuscript.

Corresponding author

Correspondence to Bo Jiang.

Ethics declarations

Conflicts of Interest/Competing Interests

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

1. Monomer-addition model and controlled-aggregation model are integrated to explain the growth mechanism of silica nanoparticles.

2. Changes in water content affect the final morphology and growth process of silica nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, Y., Luo, J. et al. The Influence of Water Content on the Growth of the Hybrid-Silica Particles by Sol-Gel Method. Silicon 13, 3413–3421 (2021). https://doi.org/10.1007/s12633-020-00756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00756-z

Keywords

Navigation