Skip to main content
Log in

Study of Infra-red Spectroscopy on Bonding Environment and Structural Properties of Nanocrystalline Silicon Thin Films Grown by VHF-PECVD Process

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Infra-red spectroscopy as an effective tool used to establish platelet like configuration in nanocrystalline silicon thin films (nc-Si:H). These films were deposited using 60 MHz assisted very high frequency plasma enhanced chemical vapor deposition process with varying pressure from 4 to 40 Pa. The deposited films were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Atomic force microscopy (AFM), Raman spectroscopy (RS), Fourier transform infra-red spectroscopy (FTIR), Dark conductivity, UV-Vis Spectra and photosensitivity. Infra-red studies of these films reveals that the hydrogen bonding is a platelet like configuration (Si-H groups at 2033 cm− 1) located at grain boundaries resulting in crystalline grains wrapped with hydrogen rich amorphous tissues that provides good passivation resulting in less dangling bonds on grain boundary surface. Structural transformation from amorphous silicon (a-Si:H) to nanocrystalline (nc-Si:H ) phase has been identified at pressure of 24 Pa. The increase in deposition pressure provides clear evidence of improved crystallinity (∼ 37%) which were depicted by increased grain size (∼ 12 nm), reduced hydrogen bonded content (∼ 5.0%), widening of optical gap (∼ 1.9 eV) with enhanced polymerization in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rech B, Wagner H (1999) Potential of amorphous silicon for solar cells. Appl Phys A 69(2):155–167

    Article  CAS  Google Scholar 

  2. Juneja S, Sudhakar S, Lodhi K, Sharma M, Kumar S (2014) Kinetics of recovery of light induced defects on thermal annealing towards stability of microcrystalline silicon films. Adv Sci Lett 20(7-8):1499–1503

    Article  Google Scholar 

  3. Saleh R, Nickel NH (2003) Raman spectroscopy of B-doped microcrystalline silicon films. Thin Solid Films 427(1):266–269

    Article  CAS  Google Scholar 

  4. Martins R, Ferreira I, Fortunato E (1995) Wide band gap microcrystalline silicon thin films. In: Solid state phenomena, vol 44. Trans Tech Publications, pp 299–346

  5. Yan WS, Wei DY, Guo YN, Xu S, Ong TM, Sern CC (2012) Low-temperature preparation of phosphorus doped μc-Si: H thin films by low-frequency inductively coupled plasma assisted chemical vapor deposition. Thin Solid Films 520 (6):1724–1728

    Article  CAS  Google Scholar 

  6. Juneja S, Sudhakar S, Gope J, Lodhi K, Sharma M, Kumar S (2015) Highly conductive boron doped micro/nanocrystalline silicon thin films deposited by VHF-PECVD for solar cell applications. J Alloys Compd 643:94–99

    Article  CAS  Google Scholar 

  7. Jadkar SR, Sali JV, Takwale MG, Musale DV, Kshirsagar ST (2001) The role of hydrogen dilution of silane and phosphorus doping on hydrogenated microcrystalline silicon (μc-Si:H) films prepared by hot-wire chemical vapor deposition (HW-CVD) technique. Thin Solid Films 395(1):206–212

    Article  CAS  Google Scholar 

  8. Ali AM, Kobayashi H, Inokuma T, Al-Hajry A (2013) Morphological, luminescence and structural properties of nanocrystalline silicon thin films. Mater Res Bull 48(3):1027–1033

    Article  CAS  Google Scholar 

  9. Juneja S, Sudhakar S, Srivastava AK, Kumar S (2016) Morphology and micro-structural studies of distinct silicon thin films deposited using very high frequency plasma enhanced chemical vapor deposition process. Thin Solid Films 619:273–280

    Article  CAS  Google Scholar 

  10. Smirnov V, Das C, Melle T, Lambertz A, Hülsbeck M, Carius R, Finger F (2009) Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells. Mater Sci Eng B 159:44–47

    Article  CAS  Google Scholar 

  11. Jackson WB, Tsai CC (1992) Hydrogen transport in amorphous silicon. Phys Rev B 45(12):6564

    Article  CAS  Google Scholar 

  12. Morral AFI, Bertomeu J, Cabarrocas PRI (2000) The role of hydrogen in the formation of microcrystalline silicon. Mater Sci Eng B 69:559–563

    Article  Google Scholar 

  13. Guha S (2004) Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition. Sol Energy 77(6):887–892

    Article  CAS  Google Scholar 

  14. Shah A, Vallat-Sauvain E, Torres P, Meier J, Kroll U, Hof CH, Droz C, Goerlitzer M, Wyrsch N, Vanecek M (2000) Intrinsic microcrystalline silicon (μc-Si: H) deposited by VHF-GD (very high frequency-glow discharge): a new material for photovoltaics and optoelectronics. Mater Sci Eng B 69:219–226

    Article  Google Scholar 

  15. He Y, Yin C, Cheng G, Wang L, Liu X, Hu GY (1994) The structure and properties of nanosize crystalline silicon films. J Appl Phys 75(2):797–803

    Article  CAS  Google Scholar 

  16. Oliveira EC, Cruz SA, Aguiar PHL (2012) Effect of PECVD deposition parameters on the DLC/PLC composition of aC: H thin films. J Braz Chem Soc 23(9):1657–1662

    Article  CAS  Google Scholar 

  17. Rath JK, Verkerk AD, Liu Y, Brinza M, Goedheer WJ, Schropp REI (2009) Gas phase considerations for the growth of device quality nanocrystalline silicon at high rate. Mater Sci Eng B 159:38–43

    Article  CAS  Google Scholar 

  18. Heintze M, Westlake W, Santos PV (1993) Surface controlled plasma deposition and etching of silicon near the chemical equilibrium. J Non-Cryst Solids 164:985–988

    Article  Google Scholar 

  19. Cabarrocas PRI, Layadi N, Heitz T, Drevillon B, Solomon I (1995) Substrate selectivity in the formation of microcrystalline silicon: mechanisms and technological consequences. Appl Phys Lett 66(26):3609–3611

    Article  Google Scholar 

  20. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energy Mater Sol Cells 78(1):469–491

    Article  CAS  Google Scholar 

  21. Kondo M, Matsuda A (2004) Novel aspects in thin film silicon solar cells–amorphous, microcrystalline and nanocrystalline silicon. Thin Solid Films 457(1):97–102

    Article  CAS  Google Scholar 

  22. Bhattacharya K, Das D (2007) Nanocrystalline silicon films prepared from silane plasma in RF-PECVD, using helium dilution without hydrogen: structural and optical characterization. Nanotechnology 18(41):415704

    Article  CAS  Google Scholar 

  23. Tauc J (2012) Amorphous and liquid semiconductors. Springer, Berlin

    Google Scholar 

  24. Jadhavar A, Pawbake AM, Waykar R, Jadkar V, Kulkarni R, Bhorde A, Rondiya S, et al. (2017) Growth of hydrogenated nano-crystalline silicon (nc-Si: H) films by plasma enhanced chemical vapor deposition (PE-CVD). Energy Procedia 110:45–52

    Article  CAS  Google Scholar 

  25. Kumar S, Dixit PN, Rauthan CMS, Parashar A, Gope J (2008) Effect of power on the growth of nanocrystalline silicon films. J Phys Condens Matter 20(33):335215

    Article  CAS  Google Scholar 

  26. Mullerova J, Jurecka S, Sutta P (2006) Optical characterization of polysilicon thin films for solar applications. Sol Energy 80(6):667–674

    Article  CAS  Google Scholar 

  27. Wang Y, Lin J, Huan CHA (2003) Structural and optical properties of a-Si: H/nc-Si: H thin films grown from Ar–H2–SiH4 mixture by plasma-enhanced chemical vapor deposition. Mater Sci Eng B 104(1):80–87

    Article  CAS  Google Scholar 

  28. Vasiliev I, Öğüt S, Chelikowsky JR (2001) Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Phys Rev Lett 86(9):1813

    Article  CAS  PubMed  Google Scholar 

  29. Sun C, Chen TP, Tay BK, Li S, Zhang YB, Huang H, Pan LK, Lau SP, Sun XW (2001) An extended quantum confinement’ theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J Phys D Appl Phys 34(24):3470

    Article  CAS  Google Scholar 

  30. Fischer M, Tan H, Melskens J, Vasudevan R, Zeman M, Smets AHM (2015) High pressure processing of hydrogenated amorphous silicon solar cells: relation between nanostructure and high open-circuit voltage. Appl Phys Lett 106(4):043905

    Article  CAS  Google Scholar 

  31. Kroll U, Meier J, Mikhailov ASS, Weber J (1996) Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution. J Appl Phys 80(9):4971–4975

    Article  CAS  Google Scholar 

  32. Finger F, Carius R, Dylla T, Klein S, Okur S, Gunes M (2003) Stability of microcrystalline silicon for thin film solar cell applications. IEE Proceedings-Circuits, Devices and Systems 150:300–308

    Article  Google Scholar 

  33. Matsui T, Matsuda A, Kondo M (2006) High-rate microcrystalline silicon deposition for p–i–n junction solar cells. Sol Energy Mater Sol Cells 90(18):3199–3204

    Article  CAS  Google Scholar 

  34. Green ML, Gusev EP, Degraeve R, Garfunkel EL (2001) Ultrathin (4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J Appl Phys 90(5):2057– 2121

    Article  CAS  Google Scholar 

  35. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energy Mater Sol Cells 78(1):469–491

    Article  CAS  Google Scholar 

  36. Plaza-Castillo J, García-barrientos A, Moreno-Moreno M, Arellano-Jiménez MJ, Vizcaíno KY, Bernal JL (2016) Analysis of H2 and SiH4 in the deposition of pm-Si: H thin films by pecvd process for solar cell applications. Microsc Microanal 22 (S3):1874–1875

    Article  Google Scholar 

  37. Juneja S, Verma P, Savelyev DA, Khonina SN, Sudhakar S, Kumar S (2016) Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications. AIP Conf Proc 1724:020016

    Article  CAS  Google Scholar 

  38. Langford AA, Fleet ML, Nelson BP, Lanford WA, Maley N (1992) Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B 45(23):13367

    Article  CAS  Google Scholar 

  39. Smets AHM, van de Sanden MCM (2007) Relation of the Si- H stretching frequency to the nanostructural Si-H bulk environment. Phys Rev B 76(7):073202

  40. Vignoli S, Morral AFI, Butté R, Meaudre R, Meaudre M (2002) Hydrogen related bonding structure in hydrogenated polymorphous and microcrystalline silicon. J Non-Cryst Solids 299:220–225

    Article  Google Scholar 

  41. Gleason KK, Petrich MA, Reimer JA (1987) Hydrogen microstructure in amorphous hydrogenated silicon. Phys Rev B 36(6):3259

    Article  CAS  Google Scholar 

  42. Zhang SB, Jackson WB (1991) Formation of extended hydrogen complexes in silicon. Phys Rev B 43 (14):12142

    Article  CAS  Google Scholar 

  43. Johnson NM, Doland C, Ponce F, Walker J, Anderson G (1991) Hydrogen in crystalline semiconductors: a review of experimental results. Phys B Condens Matter 170(1):3–20

    Article  CAS  Google Scholar 

  44. Jackson WB, Tsai CC (1992) Hydrogen transport in amorphous silicon. Phys Rev B 45(12):6564

    Article  CAS  Google Scholar 

  45. Marra DC, Edelberg EA, Naone RL, Aydil ES (1998) Silicon hydride composition of plasma-deposited hydrogenated amorphous and nanocrystalline silicon films and surfaces. J Vac Sci Technol A 16(6):3199–3210

    Article  CAS  Google Scholar 

  46. Keudell AV, Abelson JR (1998) The interaction of atomic hydrogen with very thin amorphous hydrogenated silicon films analyzed using in situ real time infrared spectroscopy: reaction rates and the formation of hydrogen platelets. J of Appl Phys 84(1):489–495

    Article  Google Scholar 

  47. Agarwal S, Hoex B, van de Sanden MCM, Maroudas D, Aydil ES (2004) Hydrogen in Si-Si bond center and platelet-like defect configurations in amorphous hydrogenated silicon. J Vac Sci Technol B 22(6):2719–2726

  48. Niwano M, Kageyama J, Kurita K, Kinashi K, Takahashi I, Miyamoto N (1994) Infrared spectroscopy study of initial stages of oxidation of hydrogen-terminated Si surfaces stored in air. J Appl Phys 76 (4):2157–2163

    Article  CAS  Google Scholar 

  49. Juneja S, Sudhakar S, Khonina SN, Skidanov RV, Porfirevb AP, Moissev OY, Kazanskiy NL, Kumar S (2016) Nanocrystalline silicon thin films and grating structures for solar cells. In: Optical technologies for telecommunications 2015, vol 9807. International Society for Optics and Photonics, p 98070F

  50. Kondo M, Matsuda A (2002) An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates. Curr Opin Solid State Mater Sci 6(5):445–453

    Article  CAS  Google Scholar 

  51. Xu L, Li ZP, Wen C, Shen WZ (2011) Bonded hydrogen in nanocrystalline silicon photovoltaic materials: impact on structure and defect density. J Appl Phys 110(6):064315

    Article  CAS  Google Scholar 

  52. Vignoli S, Butte R, Meaudre R, Meaudre M, Brenier R (2003) Links between hydrogen bonding, residual stress. structural properties and metastability in hydrogenated nanostructured silicon thin films. J Phys Condens Matter 15(43):7185

    Article  CAS  Google Scholar 

  53. Van Veen MK, Van der Werf CHM, Rath JK, Schropp REI (2003) Incorporation of amorphous and microcrystalline silicon in n–i–p solar cells. Thin Solid Films 430(1):216–219

  54. Street RA (1991) Hydrogen chemical potential and structure of a-Si: H. Phys Rev B 43(3):2454

    Article  CAS  Google Scholar 

  55. Tsu DV, Chao BS, Ovshinsky SR, Jones SJ, Yang J, Guha S, Tsu R (2001) Heterogeneity in hydrogenated silicon: evidence for intermediately ordered chainlike objects. Phys Rev B 63(12):125338

    Article  CAS  Google Scholar 

  56. Gope J, Kumar S, Singh S, Rauthan CMS, Srivastava PC (2012) Growth of mixed-phase amorphous and ultra nanocrystalline silicon thin films in the low pressure regime by a VHF PECVD process. Silicon 4(2(2012)):127–135

    Article  CAS  Google Scholar 

  57. Richter H, Wang ZP, Ley L (1981) The one phonon raman spectrum in microcrystalline silicon. Solid State Commun 39(5):625–629

    Article  CAS  Google Scholar 

  58. Juneja S, Sudhakar S, Gope J, Kumar S (2015) Mixed phase silicon thin films grown at high rate using 60 MHz assisted VHF-PECVD technique. Mater Sci Semicond Process 40:11–19

    Article  CAS  Google Scholar 

  59. Trung TQ, Jiri S, Stuchlikova H, Dinh NN, Khuong HK, Quynh PTN, Nga NTH (2009) The effects of hydrogen dilution on structure of Si: H thin films deposited by PECVD. J Phys Conf Series 187(1):012035

    Article  CAS  Google Scholar 

  60. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon raman spectra of crystalline semiconductors. Solid State Commun 58(10):739–741

    Article  CAS  Google Scholar 

  61. Fauchet PM, Campbell IH (1988) Raman spectroscopy of low-dimensional semiconductors. Crit Rev Solid State Mater Sci 14(S1):s79–s101

    Article  Google Scholar 

  62. Zi J, Buscher H, Falter C, Ludwing W, Zhang K, Xie X (1996) Raman shifts in Si nanocrystals. Appl Phys Lett 69(2):200– 202

    Article  CAS  Google Scholar 

  63. Agarwal S, Hoex B, van de Sanden MCM, Maroudas D, Aydil ES (2004) Hydrogen in Si–Si bond center and platelet-like defect configurations in amorphous hydrogenated silicon. J Vac Sci Technol, B: Microelectron Nanometer Struct–Process, Meas, Phenom 22(6):2719–2726

  64. Samanta S, Das D (2018) Microstructural association of diverse chemical constituents in nc-SiO x: H network synthesized by spontaneous low temperature plasma processing. Physica E: Low-dimensional Systems and Nanostructures

  65. Chaudhary D, Sharma M, Sudhakar S, Kumar S (2018) Effect of pressure on bonding environment and carrier transport of a-Si: H thin films deposited using 27.12 MHz Assisted PECVD process. Silicon 10(1):91–97

    Article  CAS  Google Scholar 

  66. Ray S, Mukhopadhyay S, Jana T (2006) Studies on microstructure of silicon thin films and its effect on solar cells. Sol Energy Mater Sol Cells 90(5):631–639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR-NPL, New Delhi for his kind support and encouragement. We are thankful to silicon thin film group members for their help and support. One of the authors Sucheta Juneja would like to acknowledge science and engineering research board (SERB), govt. of India for providing National Post– Doc Fellowship (NPDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, S., Sharma, M. & Kumar, S. Study of Infra-red Spectroscopy on Bonding Environment and Structural Properties of Nanocrystalline Silicon Thin Films Grown by VHF-PECVD Process. Silicon 11, 1925–1937 (2019). https://doi.org/10.1007/s12633-018-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-0008-9

Keywords

Navigation