Skip to main content
Log in

Silica Nanoparticles with Proton Donor and Proton Acceptor Groups: Synthesis and Aggregation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The effects of precursor structure and polycondensation conditions on the properties of hybrid nanoparticles synthesized from organo-trimethoxysilanes were studied. Hybrid nanoparticles containing groups capable of forming hydrogen bonds were synthesized from functional derivatives of 3-aminopropyltrimethoxysilane. For the synthesis of phenylurea-functionalized organosilica nanoparticles different approaches to nanoparticle preparation were used. It was shown that the nature of the functional groups (proton-donor or proton-acceptor) affects the aggregation of silica nanoparticles. Also, the difference in behavior of nanoparticles prepared using surface modification and polycondensation was demonstrated for different pH, ionic strength and solvent polarity. As a result, by changing the pH of the solutions, it is possible to shift the aggregation pattern of these nanoparticles, such as the size of the initially formed aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy L, Sahoo Y, Kim K-S, Bergey EJ, Prasad PN (2002) Chem Mater 14:3715–3721

    Article  CAS  Google Scholar 

  2. Wang Y, Forssberg E (2006) Int J Miner Process 81:1–14

    Article  CAS  Google Scholar 

  3. Ulrich GD, Rieh JW (1982) J Colloid Interface Sci 87:257–265

    Article  CAS  Google Scholar 

  4. Zhelev Z, Ohba H, Bakalova R (2006) J Am Chem Soc 128:6324–6325

    Article  CAS  Google Scholar 

  5. Budny A, Novak F, Plumeré N, Schetter B, Speiser B, Straub D, Mayer HA, Reginek M (2006) Langmuir 22:10605–10611

    Article  CAS  Google Scholar 

  6. Vertegel AA, Siegel RW, Dordick JS (2004) Langmuir 20:6800–6807

    Article  CAS  Google Scholar 

  7. Banerjee S, Santra S (2009) Tetrahedron Lett 50:2037–2040

    Article  CAS  Google Scholar 

  8. Smith JE, Wang L, Tan W (2006) Trends Anal Chem 25:848–855

    Article  CAS  Google Scholar 

  9. Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR, Wiesner U, Nikitin AY (2007) J Biomed Opt 12:064007–1–064007–11

    Google Scholar 

  10. Caruso F, Caruso RA, Möhwald H (1998) Sci 282:1111–1114

    Article  CAS  Google Scholar 

  11. Howard AG, Khdary NH (2005) Analyst 130:1432–1438

    Article  CAS  Google Scholar 

  12. Bagwe RP, Hilliard LR, Tan W (2006) Langmuir 22:4357–4362

    Article  CAS  Google Scholar 

  13. Bordes R, Tropsch J, Holmberg K (2010) Langmuir 26:3077–3083

    Article  CAS  Google Scholar 

  14. Hermans TM, Broeren MAC, Gomopoulos N, Smeijers AF, Mezari B, Van Leeuwen ENM, Vos MRJ, Magusin PCMM, Hilbers PAJ, Van Genderen MHP, Sommerdijk NAJM, Fytas G, Meijer EW (2007) J Am Chem Soc 129:15631–15638

    Article  CAS  Google Scholar 

  15. Kumar MNVR, Sameti M, Mohapatra SS, Kong X, Lockey RF, Bakowsky U, Lindenblatt G, Schmidt CH, Lehr C-M (2004) J Nanosci Nanotechnol 4:876–881

    Article  CAS  Google Scholar 

  16. Hsieh Ch-Ch, Lin K-F (2005) J Mater Chem 15:4154–4160

    Article  CAS  Google Scholar 

  17. Perrin DD, Armarego WLF (1988) Purification of laboratory chemicals, 3rd edn. Pergamon Press, Exeter

    Google Scholar 

  18. Pham KN, Fullston D, Sagoe-Crentsil K (2007) Aust J Chem 60:662–666

    Article  CAS  Google Scholar 

  19. Gellermann C, Storch W, Wolter H (1997) J Sol-Gel Sci Technol 8:173–176

    CAS  Google Scholar 

  20. Stober W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  21. Deng TS, Zhang QF, Zhang JY, Shen X, Zhu KT, Wu JL (2009) J Colloid Interface Sci 329:292–299

    Article  CAS  Google Scholar 

  22. Lee Y-G, Park J-H, Oh C, Oh S-G, Kim YC (2007) Langmuir 23:10875–10878

    Article  CAS  Google Scholar 

  23. Nakamura M, Ishimura K (2007) J Phys Chem C 111:18892–18898

    Article  CAS  Google Scholar 

  24. Nakamura M, Ishimura K (2008) Langmuir 24:12228–12234

    Article  CAS  Google Scholar 

  25. Nair BP, Pavithran C (2010) Langmuir 26(2):730–735

    Article  CAS  Google Scholar 

  26. Davies G-L, Barry A, Gun’ko YK (2009) Chem Phys Lett 468:239–244

    Article  CAS  Google Scholar 

  27. Jong MK (2009) Ceram Int 35:1015–1019

    Article  Google Scholar 

  28. Mehendale NC, Lutz M, Spek AL, Klein Gebbink RJM, Koten G (2006) J Mol Catal A: Chem 257:167–175

    Article  CAS  Google Scholar 

  29. Ziganshin MA, Yakimova LS, Khayarov KR, Gorbatchuk VV, Vysotsky MO, Böhmer V (2006) Chem Comm 3897–3899

  30. Iler RK (1979) The chemistry of silica. Wiley-Interscience, New York

  31. Huang H, Ruckenstein E (2006) Langmuir 22:4541–4546

    Article  CAS  Google Scholar 

  32. Chakravarti N, Ghosh S, Dhar NR (1930) J Phys Chem 34:326–3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilya Zharov or Ivan I. Stoikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbachuk, V.V., Yakimova, L.S., Mostovaya, O.A. et al. Silica Nanoparticles with Proton Donor and Proton Acceptor Groups: Synthesis and Aggregation. Silicon 3, 5–12 (2011). https://doi.org/10.1007/s12633-011-9077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-011-9077-8

Keywords

Navigation