Skip to main content
Log in

Spectral and Morphological Studies of Nanocrystalline Silicon Thin Films Synthesized by PECVD for Solar Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2010

Abstract

In this work, a series of nanocrystalline silicon films were studied with different microstructural tools to elucidate the film microstructure at different stages of growth. Thin Si films, with a series of multilayers, were deposited by radio frequency glow discharge using Plasma Enhanced Chemical Vapour Deposition (PECVD) in silane gas (SiH4) highly diluted by hydrogen. Different nanostructured films were prepared by systematically varying gas flow ratios (R = 1/1, 1/5, 1/7.5, 1/10, 1/15, 1/20) for films having different thicknesses. By changing the structure of the material, going from pure amorphous to nanocrystalline silicon, it is possible to obtain a variation in optical gap using the same material. In these structures, layers with different individual optical gaps are stacked together in order to cover as much of the solar spectrum as possible. The nanostructures of the silicon thin films were studied using FTIR, RS, PL, XRD, AFM, SEM, TEM and HRTEM. The results were correlated for conglomerate surface, grain surface. Some theoretical calculations were used for designing the overall stack geometry and for interpretation of characterization. These agree well with experimental observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins RW, Ferlauto AS, Ferreira GM, Chen C, Koh J, Koval RJ, Lee Y, Pearce JM, Wronski CR (2003) Sol Energy Mater Sol Cells 78:143–180

    Article  CAS  Google Scholar 

  2. Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C (2006) Sol Energy Mater Sol Cells 90:2952–2959

    Article  CAS  Google Scholar 

  3. Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Muck A, Rech B, Wagner H (2000) Sol Energy Mater Sol Cells 62:97–108

    Article  CAS  Google Scholar 

  4. Anbarasan PM, Manimekalai S, Selvanandan S, Rajesh KB, Kalyanasundaram A, Rengaiyan R (2007) Atti Della Fondazione Giorgio Ronchi ANNO LXII N.3:pp 363-374

  5. Filonovich SA, Aguas H, Bernacka-Wojcik I, Gaspar C, Vilarigues M, Silva LB, Fortunato E, Martins R (2009) Vacuum 83:1253–1256

    Article  CAS  Google Scholar 

  6. Chun Cheng I, Wagner S (2002) Appl Phys Lett 80:440–442

    Article  Google Scholar 

  7. Lee CH, Sazonov A, Nathan A, Robertson J (2006) Appl Phys Lett 89:252101–252103

    Article  Google Scholar 

  8. Goerlitzer M, Beck N, Torres P, Meier J, Wyrsch N, Shah AV (1997) Mat Res Soc Symp Proc 467:301–306

    CAS  Google Scholar 

  9. Yan B, Yue G, Owens JM, Yang J, Guha S (2004) Appl Phys Lett 85:1925–1927

    Article  CAS  Google Scholar 

  10. Aberle Armin G (2006) Thin Solid Films 511–512:26–34

    Article  Google Scholar 

  11. Iqbal Z, Veprek S (1982) J Phys C 15:377–392

    Article  CAS  Google Scholar 

  12. Staebler DL, Wronski CR (1977) Appl Phys Lett 31:292–294

    Article  CAS  Google Scholar 

  13. Xu Y, Liao X, Kong G, Zeng X, Hu Z, Diao H, Zhang S (2003) J Cryst Growth 256:27–32

    Article  CAS  Google Scholar 

  14. Kleider JP, Longeaud C, Bruggemann R, Houze F (2001) Thin Solid Films 383:57–60

    Article  CAS  Google Scholar 

  15. Campbell IH, Fauchet PM (1986) Solid State Commun 58:739–741

    Article  CAS  Google Scholar 

  16. Green MA (2000) Mater Sci Eng B 74:118–124

    Article  Google Scholar 

  17. Green MA (2003) Third generation photovoltaics: ultra-high efficiency at low cost. Springer-Verlag, Berlin

    Google Scholar 

  18. Moutinho HR, To B, Jiang CS, Xu Y, Nelson BP, Teplin CW, Jones KM, Perkins J, Al-Jassim MM (2006) J Vac Sci Technol A 24:95–105

    Article  CAS  Google Scholar 

  19. Viera G, Huet S, Mikikian M, Boufendi L (2002) Thin Solid Films 403–404:467–470

    Article  Google Scholar 

  20. Conibeer G, Green M, Corkish R, Cho Y, Cho EC, Jiang CW, Fangsuwannarak T, Pink E, Huang Y, Puzze T, Trupke T, Richards B, Shalav A, Lin KL (2006) Thin Solid Films 511–512:654–662

    Article  Google Scholar 

  21. Martin-Palma RJ, Pascual L, Herrero P, Martinez-Duart JM (2002) Appl Phys Lett 81:25–27

    Article  CAS  Google Scholar 

  22. Pascual L, Martin-Palma RJ, Landa-Canovas AR, Herrero P, Martinez-Duart JM (2005) Appl Phys Lett 87:251921–13

    Article  Google Scholar 

  23. Martin-Palma RJ, Pascual L, Landa A, Herrero P, Martinez-Duart JM (2004) Appl Phys Lett 85:2517–2519

    Article  CAS  Google Scholar 

  24. Lin CY, Fang YK, Chen SF, Chang SH, Chou TH (2006) Mater Sci Eng B 134:99–102

    Article  CAS  Google Scholar 

  25. Morales M, Leconte Y, Rizk R, Chateigner D (2004) Thin Solid Films 450:216–221

    Article  CAS  Google Scholar 

  26. Fukaya K, Tabata A, Mizutani T (2005) Thin Solid Films 478:132–136

    Article  CAS  Google Scholar 

  27. Touir H, Dixmier J, Zellama K, Morhange JF, Alkaim P (1998) J Non-Cryst Solids 227:906–910

    Article  Google Scholar 

  28. Martin-Palma RJ, Pascual L, Herrero P, Martinez-Duart JM (2005) Appl Phys Lett 87:211906–13

    Article  Google Scholar 

  29. Edelberg E, Bergh S, Naone R, Hall M, Aydil ES (1997) J Appl Phys 81:2410–2417

    Article  CAS  Google Scholar 

  30. Tsu R, Gonzalez-Hernandez J, Chao SS, Lee SC, Tanaka K (1982) Appl Phys Lett 40:534–535

    Article  CAS  Google Scholar 

  31. Gracin D, Bernstorff S, Dubcek P, Gajovic A, Juraic K (2007) Thin Solid Films 515:5615–5619

    Article  CAS  Google Scholar 

  32. Gracin D, Juraic K, Dubcek P, Gajovic A, Bernstorff S (2006) Appl Surf Sci 252:5598–5601

    Article  CAS  Google Scholar 

  33. Gracin D, Bernstorff S, Dubcek P, Gajovic A, Juraic K (2007) J Appl Crystallogr 40:s373–s376

    Article  CAS  Google Scholar 

  34. Manotas S, Agullo-Rueda F, Moreno JD, Martin-Palma RJ, Guerrero-Lemus R, Martinez-Duart JM (1999) Appl Phys Lett 75:977–979

    Article  CAS  Google Scholar 

  35. Ram SK (2006) Ph.D thesis, I.I.T. Kanpur, India

  36. Schropp REI, Zeman M (1988) Amorphous and microcrystalline silicon solar cells. Klumer Academic, Boston

    Google Scholar 

  37. He YL, Yin CZ, Cheng GX, Wang LC, Liu XN, Hu GY (1994) J Appl Phys 70:798–804

    Google Scholar 

  38. Moorthy Babu S, Kitamura K, Takekawa S (2005) J Cryst Growth 275:e681–e686

    Article  Google Scholar 

  39. Finger F, Klein S, Dylla T, Baia Neto AL, Vetterl O, Carius R (2002) Mater Res Soc Symp Proc 715:123–125

    CAS  Google Scholar 

  40. Lydia Tse WF (2007) Thesis. Simon Fraser University, Burnaby

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Anbarasan.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12633-010-9047-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbarasan, P.M., Senthilkumar, P., Manimegalai, S. et al. Spectral and Morphological Studies of Nanocrystalline Silicon Thin Films Synthesized by PECVD for Solar Cells. Silicon 2, 7–17 (2010). https://doi.org/10.1007/s12633-009-9028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-009-9028-9

Keywords

Navigation