Skip to main content
Log in

Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This monograph presents an overview of friction stir processing (FSP) of surface metal-matrix composites (MMCs) using the AZ91 magnesium alloy. The reported results in relation to various reinforcing particles, including silicon carbide (SiC), alumina (Al2O3), quartz (SiO2), boron carbide (B4C), titanium carbide (TiC), carbon fiber, hydroxyapatite (HA), in-situ formed phases, and hybrid reinforcements are summarized. AZ91 composite fabricating methods based on FSP are explained, including groove filling (grooving), drilled hole filling, sandwich method, stir casting followed by FSP, and formation of in-situ particles. The effects of introducing second-phase particles and FSP process parameters (e.g., tool rotation rate, traverse speed, and the number of passes) on the microstructural modification, grain refinement, homogeneity in the distribution of particles, inhibition of grain growth, mechanical properties, strength–ductility trade-off, wear/tribological behavior, and corrosion resistance are discussed. Finally, useful suggestions for future work are proposed, including focusing on the superplasticity and superplastic forming, metal additive manufacturing processes based on friction stir engineering (such as additive friction stir deposition), direct FSP, stationary shoulder FSP, correlation of the dynamic recrystallization (DRX) grain size with the Zener–Hollomon parameter similar to hot deformation studies, process parameters (such as the particle volume fraction and external cooling), and common reinforcing phases such as zirconia (ZrO2) and carbon nanotubes (CNTs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bairagi and S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects, J. Magnes. Alloys, 10(2022), No. 3, p. 627.

    Article  CAS  Google Scholar 

  2. A. Malik, U.M. Chaudry, K. Hamad, and T.S. Jun, Microstructure features and superplasticity of extruded, rolled and SPD-processed magnesium alloys: A short review, Metals, 11(2021), No. 11, art. No. 1766.

  3. B. Pourbahari, H. Mirzadeh, and M. Emamy, Elucidating the effect of intermetallic compounds on the behavior of Mg-Gd-Al-Zn magnesium alloys at elevated temperatures, J. Mater. Res., 32(2017), No. 22, p. 4186.

    Article  CAS  Google Scholar 

  4. N. Barri, A.R. Salasel, A. Abbasi, H. Mirzadeh, M. Emamy, and M. Malekan, A new intermetallic phase formation in Mg-Si-Ni magnesium-based in situ formed alloys, Vacuum, 164(2019), p. 349.

    Article  CAS  Google Scholar 

  5. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705.

    Article  CAS  Google Scholar 

  6. Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi, Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium, J. Mater. Res. Technol., 19(2022), p. 3100.

    Article  CAS  Google Scholar 

  7. E. Gerashi, R. Alizadeh, and R. Mahmudi, Improved corrosion resistance and mechanical properties of biodegradable Mg-4Zn-xSr alloys: Effects of heat treatment, Sr additions, and multi-directional forging, J. Mater. Res. Technol., 20(2022), p. 3363.

    Article  CAS  Google Scholar 

  8. Z. Zareian, M. Emamy, M. Malekan, H. Mirzadeh, W.J. Kim, and A. Bahmani, Tailoring the mechanical properties of Mg-Zn magnesium alloy by calcium addition and hot extrusion process, Mater. Sci. Eng. A, 774(2020), art. No. 138929.

  9. M. Golrang, M. Mobasheri, H. Mirzadeh, and M. Emamy, Effect of Zn addition on the microstructure and mechanical properties of Mg–0.5Ca–0.5RE magnesium alloy, J. Alloys Compd., 815(2020), art. No. 152380.

  10. J.W. Cha, S.C. Jin, J.G. Jung, and S.H. Park, Effects of homogenization temperature on microstructure and mechanical properties of high-speed-extruded Mg-5Bi-3Al alloy, J. Magnes. Alloys, 10(2022), No. 10, p. 2833.

    Article  CAS  Google Scholar 

  11. H. Abedi, M. Emamy, J. Rassizadehghani, H. Mirzadeh, and M. Ra’ayatpour, Enhanced mechanical properties of as-cast rare earth bearing magnesium alloy via elevated-temperature homogenization, Mater. Today Commun., 31(2022), art. No. 103821.

  12. Ö. Ayer, Effect of Die parameters on the grain size, mechanical properties and fracture mechanism of extruded AZ31 magnesium alloys, Mater. Sci. Eng. A, 793(2020), art. No. 139887.

  13. M. Razzaghi, H. Mirzadeh, and M. Emamy, Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg-2Al magnesium alloy, Vacuum, 167(2019), p. 214.

    Article  CAS  Google Scholar 

  14. J. Dutkiewicz, D. Kalita, W. Maziarz, and M. Faryna, Superplastic deformation of Mg-9Li-2Al-0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging, Arch. Civ. Mech. Eng., 20(2020), No. 4, p. 1.

    Article  Google Scholar 

  15. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate reinforced metal matrix composites—A review, J. Mater. Sci., 26(1991), No. 5, p. 1137.

    Article  CAS  Google Scholar 

  16. M. Maleki, H. Mirzadeh, and M. Emamy, Improvement of mechanical properties of in situ Mg-Si composites via Cu addition and hot working, J. Alloys Compd., 905(2022), art. No. 164176.

  17. C.J. AnandhaKumar, S. Gopi, D.G. Mohan, and S. ShashiKumar, Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational methods, J. Adhesion Sci. Technol., 36(2022), No. 16, p. 1707.

    Article  Google Scholar 

  18. S.J. Chen, L. Wang, X.Q. Jiang, T. Yuan, W. Jiang, and Y.Y. Liu, Microstructure and mechanical properties of AZ31B Mg alloy fabricated by friction stir welding with pulse current, J. Manuf. Processes, 71(2021), p. 317.

    Article  Google Scholar 

  19. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.

    Article  Google Scholar 

  20. A. Heidarzadeh, S. Mironov, R. Kaibyshev, et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci., 117(2021), art. No. 100752.

  21. V. Patel, W.Y. Li, A. Vairis, and V. Badheka, Recent development in friction stir processing as a solid-state grain refinement technique: Microstructural evolution and property enhancement, Crit. Rev. Solid State Mater. Sci., 44(2019), No. 5, p. 378.

    Article  CAS  Google Scholar 

  22. B. Sadeghi, M. Shamanian, F. Ashrafizadeh, P. Cavaliere, and A. Rizzo, Friction stir processing of spark plasma sintered aluminum matrix composites with bimodal micro- and nano-sized reinforcing Al2O3 particles, J. Manuf. Processes, 32(2018), p. 412.

    Article  Google Scholar 

  23. G. Moeini, S.V. Sajadifar, T. Wegener, et al., On the influence of build orientation on properties of friction stir welded Al–Si10Mg parts produced by selective laser melting, J. Mater. Res. Technol., 12(2021), p. 1446.

    Article  CAS  Google Scholar 

  24. D. Harwani, V. Badheka, V. Patel, W.Y. Li, and J. Andersson, Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants - A review, J. Mater. Res. Technol., 12(2021), p. 2055.

    Article  CAS  Google Scholar 

  25. A.K. Srivastava, A.R. Dixit, M. Maurya, et al., 20th century uninterrupted growth in friction stir processing of lightweight composites and alloys, Mater. Chem. Phys., 266(2021), art. No. 124572.

  26. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction stir processing: A novel technique for fabrication of surface composite, Mater. Sci. Eng. A, 341(2003), No. 1–2, p. 307.

    Article  Google Scholar 

  27. S. Bharti, N.D. Ghetiya, and K.M. Patel, A review on manufacturing the surface composites by friction stir processing, Mater. Manuf. Processes, 36(2021), No. 2, p. 135.

    Article  CAS  Google Scholar 

  28. B.R. Sunil, G.P.K. Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing, J. Magnes. Alloys, 4(2016), No. 1, p. 52.

    Article  CAS  Google Scholar 

  29. Z. Nasiri, M.S. Khorrami, H. Mirzadeh, and M. Emamy, Enhanced mechanical properties of as-cast Mg-Al-Ca magnesium alloys by friction stir processing, Mater. Lett., 296(2021), art. No. 129880.

  30. M.N. Avettand-Fènoël and A. Simar, A review about friction stir welding of metal matrix composites, Mater. Charact., 120(2016), p. 1.

    Article  Google Scholar 

  31. W. Tang, X. Guo, J.C. McClure, L.E. Murr, and A. Nunes, Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 7(1998), No. 2, p. 163.

    Article  CAS  Google Scholar 

  32. R. Rouzbehani, A.H. Kokabi, H. Sabet, M. Paidar, and O.O. Ojo, Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy, J. Mater. Process. Technol., 262(2018), p. 239.

    Article  CAS  Google Scholar 

  33. F. Badkoobeh, H. Mostaan, M. Rafiei, H.R. Bakhsheshi-Rad, and F. Berto, Friction stir welding/processing of Mg-based alloys: A critical review on advancements and challenges, Materials, 14(2021), No. 21, art. No. 6726.

  34. Y.X. Huang, T.H. Wang, W.Q. Guo, L. Wan and S.X. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing, Mater. Des., 59(2014), p. 274.

    Article  CAS  Google Scholar 

  35. A.I. Almazrouee, K.J. Al-Fadhalah, and S.N. Alhajeri, A new approach to direct friction stir processing for fabricating surface composites, Crystals, 11(2021), No. 6, art. No. 638.

  36. J. Iwaszko and M. Sajed, Technological aspects of producing surface composites by friction stir processing—A review, J. Compos. Sci., 5(2021), No. 12, art. No. 323.

  37. D. Sejani, W.Y. Li, and V. Patel, Stationary shoulder friction stir welding-low heat input joining technique: A review in comparison with conventional FSW and bobbin tool FSW, Crit. Rev. Solid State Mater. Sci., 47(2022), No. 6, p. 865.

    Article  CAS  Google Scholar 

  38. V. Patel, W.Y. Li, and Y.X. Xu, Stationary shoulder tool in friction stir processing: A novel low heat input tooling system for magnesium alloy, Mater. Manuf. Processes, 34(2019), No. 2, p. 177.

    Article  CAS  Google Scholar 

  39. V. Patel, W.Y. Li, J. Andersson, and N. Li, Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing, J. Mater. Res. Technol., 17(2022), p. 3150.

    Article  CAS  Google Scholar 

  40. V. Patel, W.Y. Li, and Q. Wen, Surface analysis of stationary shoulder friction stir processed AZ31B magnesium alloy, Mater. Sci. Technol., 35(2019), No. 5, p. 628.

    Article  CAS  Google Scholar 

  41. W.Y. Li, P.L. Niu, S.R. Yan, V. Patel, and Q. Wen, Improving microstructural and tensile properties of AZ31B magnesium alloy joints by stationary shoulder friction stir welding, J. Manuf. Processes, 37(2019), p. 159.

    Article  CAS  Google Scholar 

  42. F. Yousefpour, R. Jamaati, and H.J. Aval, Effect of traverse and rotational speeds on microstructure, texture, and mechanical properties of friction stir processed AZ91 alloy, Mater. Charact., 178(2021), art. No. 111235.

  43. H.J. Sharahi, M. Pouranvari, and M. Movahedi, Strengthening and ductilization mechanisms of friction stir processed cast Mg-Al-Zn alloy, Mater. Sci. Eng. A, 781(2020), art. No. 139249.

  44. A. Afsharnaderi, M. Lotfpour, H. Mirzadeh, M. Emamy, and M. Malekan, Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion, Mater. Sci. Eng. A, 792(2020), art. No. 139817.

  45. F. Ghorbani, M. Emamy, and H. Mirzadeh, Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working, Arch. Civ. Mech. Eng., 21(2021), No. 2, p. 1.

    Article  Google Scholar 

  46. H. Mirzadeh, A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach, J. Magnes. Alloys, 2(2014), No. 3, p. 225.

    Article  CAS  Google Scholar 

  47. S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 334.

    Article  CAS  Google Scholar 

  48. Q. Liu, Q.X. Ma, G.Q. Chen, et al., Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci., 138(2018), p. 284.

    Article  CAS  Google Scholar 

  49. F. Chai, F. Yan, W. Wang, Q.C. Lu, and X. Fang, Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing, J. Mater. Res., 33(2018), No. 12, p. 1789.

    Article  CAS  Google Scholar 

  50. P. Asadi, M.K.B. Givi, K. Abrinia, M. Taherishargh, and R. Salekrostam, Effects of SiC particle size and process parameters on the microstructure and hardness of AZ91/SiC composite layer fabricated by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1554.

    Article  CAS  Google Scholar 

  51. J. Iwaszko, K. Kudła, and K. Fila, Friction stir processing of the AZ91 magnesium alloy with SiC particles, Arch. Mater. Sci. Eng., 77(2016), No. 2, p. 85.

    Article  Google Scholar 

  52. P. Asadi, G. Faraji, A. Masoumi, and M.K.B. Givi, Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: Effects of particle types and number of friction stir processing passes, Metall. Mater. Trans. A, 42(2011), No. 9, p. 2820.

    Article  CAS  Google Scholar 

  53. M. Dadaei, H. Omidvar, B. Bagheri, M. Jahazi, and M. Abbasi, The effect of SiC/Al2O3 particles used during FSP on mechanical properties of AZ91 magnesium alloy, Int. J. Mater. Res., 105(2014), No. 4, p. 369.

    Article  CAS  Google Scholar 

  54. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S.E. Mirsalehi, Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP, Trans. Nonferrous Met. Soc. China, 30(2020), No. 4, p. 905.

    Article  CAS  Google Scholar 

  55. Z. Savaedi, R. Motallebi, and H. Mirzadeh, A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys, J. Alloys Compd., 903(2022), art. No. 163964.

  56. A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing, J. Mater. Process. Technol., 222(2015), p. 301.

    Article  CAS  Google Scholar 

  57. H. Mirzadeh, Developing constitutive equations of flow stress for hot deformation of AZ31 magnesium alloy under compression, torsion, and tension, Int. J. Mater. Form., 12(2019), No. 4, p. 643.

    Article  Google Scholar 

  58. L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters, Acta Mater., 57(2009), No. 2, p. 326.

    Article  CAS  Google Scholar 

  59. H. Mirzadeh, High strain rate superplasticity via friction stir processing (FSP): A review, Mater. Sci. Eng. A, 819(2021), art. No. 141499.

  60. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509.

    Article  CAS  Google Scholar 

  61. K. Dehghani and A. Chabok, Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4325.

    Article  Google Scholar 

  62. A.M. Jamili, A. Zarei-Hanzaki, H.R. Abedi, M. Mosayebi, R. Kocich, and L. Kunčická, Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy, Mater. Sci. Eng. A, 775(2020), art. No. 138837.

  63. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1133.

    Article  CAS  Google Scholar 

  64. J. Iwaszko and K. Kudła, Microstructure, hardness, and wear resistance of AZ91 magnesium alloy produced by friction stir processing with air-cooling, Int. J. Adv. Manuf. Technol., 116(2021), No. 3–4, p. 1309.

    Article  Google Scholar 

  65. J. Iwaszko, New trends in friction stir processing: Rapid cooling—A review, Trans. Indian Inst. Met., 75(2022), No. 7, p. 1681.

    Article  Google Scholar 

  66. C. Rathinasuriyan, A. Mystica, R. Sankar, and V.S.S. Kumar, Experimental investigation of cooling medium on submerged friction stir processed AZ31 magnesium alloy, Mater. Today Proc., 46(2021), p. 3386.

    Article  CAS  Google Scholar 

  67. V. Patel, W.Y. Li, X.C. Liu, et al., Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate, Mater. Sci. Eng. A, 784(2020), art. No. 139322.

  68. J.L. Shang, L.M. Ke, F.C. Liu, F.Y. Lv, and L. Xing, Aging behavior of nano SiC particles reinforced AZ91D composite fabricated via friction stir processing, J. Alloys Compd., 797(2019), p. 1240.

    Article  CAS  Google Scholar 

  69. M. Rabiee, H. Mirzadeh, and A. Ataie, Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying, Adv. Powder Technol., 28(2017), No. 8, p. 1882.

    Article  CAS  Google Scholar 

  70. T.J. Chen, Z.M. Zhu, Y. Ma, Y.D. Li, and Y. Hao, Friction stir processing of thixoformed AZ91D magnesium alloy and fabrication of surface composite reinforced by SiCps, J. Wuhan Univ. Technol. Mater. Sci. Ed., 25(2010), No. 2, p. 223.

    Article  CAS  Google Scholar 

  71. W.B. Lee, C.Y. Lee, M.K. Kim, et al., Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite, Compos. Sci. Technol., 66(2006), No. 11–12, p. 1513.

    Article  CAS  Google Scholar 

  72. M. Abbasi, B. Bagheri, M. Dadaei, H.R. Omidvar, and M. Rezaei, The effect of FSP on mechanical, tribological, and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface, Int. J. Adv. Manuf. Technol., 77(2015), No. 9–12, p. 2051.

    Article  Google Scholar 

  73. A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, and A.O. Moghaddam, Mechanical, wear and corrosion behaviors of AZ91/SiC composite layer fabricated by friction stir vibration processing, Surf. Topogr.: Metrol. Prop., 9(2021), No. 3, art. No. 035038.

  74. G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Microstructures and mechanical properties of Al2O3/AZ91 surface nanocomposite layer produced by friction stir processing, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 225(2011), No. 8, p. 1331.

    Article  CAS  Google Scholar 

  75. G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1583.

    Article  CAS  Google Scholar 

  76. D. Ahmadkhaniha, M.H. Sohi, A. Salehi, and R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing, J. Magnes. Alloys, 4(2016), No. 4, p. 314.

    Article  CAS  Google Scholar 

  77. M. Soleimani, H. Mirzadeh, and C. Dehghanian, Processing route effects on the mechanical and corrosion properties of dual phase steel, Met. Mater. Int., 26(2020), No. 6, p. 882.

    Article  Google Scholar 

  78. V.R. Vaira, R. Padmanaban, and M. Govindaraju, Synthesis and characterization of magnesium alloy surface composite (AZ91D-SiO2) by friction stir processing for bioimplants, Silicon, 12(2020), No. 5, p. 1085.

    Article  Google Scholar 

  79. D. Khayyamin, A. Mostafapour, and R. Keshmiri, The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP, Mater. Sci. Eng. A, 559(2013), p. 217.

    Article  CAS  Google Scholar 

  80. Z. Savaedi, H. Mirzadeh, R.M. Aghdam, and R. Mahmudi, Thermal stability, grain growth kinetics, mechanical properties, and bio-corrosion resistance of pure Mg, ZK30, and ZEK300 alloys: A comparative study, Mater. Today Commun., 33(2022), art. No. 104825.

  81. M.R. Zamani, H. Mirzadeh, M. Malekan, S.C. Cao, and J.W. Yeh, Grain growth in high-entropy alloys (HEAs): A review, High Entropy Alloys Mater., 2022. https://doi.org/10.1007/s44210-022-00002-8

  82. I. Dinaharan, N. Murugan, and E.T. Akinlabi, Friction stir processing route for metallic matrix composite production, [in] Encyclopedia of Materials: Composites, Vol. 2, Elsevier, Amsterdam, 2021, p. 702.

    Chapter  Google Scholar 

  83. M. Rezayat, M. Gharechomaghlu, H. Mirzadeh, and M.H. Parsa, A comprehensive approach for quantitative characterization and modeling of composite microstructures, Appl. Math. Model., 40(2016), No. 19–20, p. 8826.

    Article  Google Scholar 

  84. I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Development of titanium particulate reinforced AZ31 magnesium matrix composites via friction stir processing, J. Alloys Compd., 820(2020), art. No. 153071.

  85. V. Sharma, Y. Gupta, B.V.M. Kumar, and U. Prakash, Friction stir processing strategies for uniform distribution of reinforcement in a surface composite, Mater. Manuf. Processes, 31(2016), No. 10, p. 1384.

    Article  CAS  Google Scholar 

  86. I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing, J. Magnes. Alloys, 10(2022), No. 4, p. 979.

    Article  CAS  Google Scholar 

  87. I. Dinaharan, S. Zhang, G.Q. Chen, and Q.Y. Shi, Titanium particulate reinforced AZ31 magnesium matrix composites with improved ductility prepared using friction stir processing, Mater. Sci. Eng. A, 772(2020), art. No. 138793.

  88. W. Wang, P. Han, P. Peng, et al., Friction stir processing of magnesium alloys: A review, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 43.

    Article  CAS  Google Scholar 

  89. A.M. Desai, B.C. Khatri, V. Patel, and H. Rana, Friction stir welding of AZ31 magnesium alloy: A review, Mater. Today Proc., 47(2021), p. 6576.

    Article  CAS  Google Scholar 

  90. P. Asadi, M.K.B. Givi, N. Parvin, A. Araei, M. Taherishargh, and S. Tutunchilar, On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91, Int. J. Adv. Manuf. Technol., 63(2012), No. 9–12, p. 987.

    Article  Google Scholar 

  91. K. Fuse, V. Badheka, V. Patel, and J. Andersson, Dual sided composite formation in Al6061/B4C using novel bobbin tool friction stir processing, J. Mater. Res. Technol., 13(2021), p. 1709.

    Article  CAS  Google Scholar 

  92. S. Rathee, S. Maheshwari, A.N. Siddiquee, and M. Srivastava, Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing, Def. Technol., 13(2017), No. 2, p. 86.

    Article  Google Scholar 

  93. M. Balakrishnan, I. Dinaharan, R. Palanivel, and R. Sivaprakasam, Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing, J. Magnes. Alloys, 3(2015), No. 1, p. 76.

    Article  CAS  Google Scholar 

  94. K. Wei, R. Hu, D.D. Yin, et al., Grain size effect on tensile properties and slip systems of pure magnesium, Acta Mater., 206(2021), art. No. 116604.

  95. H. Patle, B.R. Sunil, and R. Dumpala, Sliding wear behavior of AZ91/B4C surface composites produced by friction stir processing, Mater. Res. Express, 7(2020), No. 1, art. No. 016586.

  96. N. Singh, J. Singh, B. Singh, and N. Singh, Wear behavior of B4C reinforced AZ91 matrix composite fabricated by FSP, Mater. Today Proc., 5(2018), No. 9, p. 19976.

    Article  CAS  Google Scholar 

  97. S. Vijayan, J.P.L. Gnanavel, G. Selvakumar, and S.R.K. Rao, Study on surface characteristics of friction stir processed AZ91 with titanium carbide micro particles, Indian J. Eng. Mater. Sci., 26(2019), No. 3–4, p. 205.

    CAS  Google Scholar 

  98. B.N. Sahoo, M.D.F. Khan, S. Babu, S.K. Panigrahi, and G.D.J. Ram, Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in situ TiC-TiB2/AZ91 magnesium matrix composite, Mater. Sci. Eng. A, 724(2018), p. 269.

    Article  CAS  Google Scholar 

  99. M.R. Moazami, A. Razaghian, H. Mirzadeh, M. Emamy, and A. Moharami, Tribological behavior of as-cast and wrought Al-Mg2Si hybrid composites reinforced by Ti-based intermetallics, J. Mater. Res. Technol., 20(2022), p. 1315.

    Article  CAS  Google Scholar 

  100. H.S. Arora, H. Singh, B.K. Dhindaw, and H.S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Trans. Indian Inst. Met., 65(2012), No. 6, p. 735.

    Article  CAS  Google Scholar 

  101. A. Afrinaldi, T. Kakiuchi, S. Nakagawa, et al., Fabrication of recycled carbon fiber reinforced magnesium alloy composite by friction stir processing using 3-flat pin tool and its fatigue properties, Mater. Trans., 59(2018), No. 3, p. 475.

    Article  CAS  Google Scholar 

  102. A.I. Mertens, A. Simar, H.M. Montrieux, J. Halleux, F. Delannay, and J. Lecomte-Beckers, Friction stir processing of magnesium matrix composites reinforced with carbon fibres: Influence of the matrix characteristics and of the processing parameters on microstructural developments, [in] 9th International Conference on Mgnesium Alloys and their Applications, Vancouver, 2012.

  103. F. Yousefpour, R. Jamaati, and H.J. Aval, Investigation of microstructure, crystallographic texture, and mechanical behavior of magnesium-based nanocomposite fabricated via multipass FSP for biomedical applications, J. Mech. Behav. Biomed. Mater., 125(2022), art. No. 104894.

  104. F. Yousefpour, R. Jamaati, and H.J. Aval, Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications, J. Mech. Behav. Biomed Mater., 125(2022), art. No. 104983.

  105. I. Dinaharan and E.T. Akinlabi, Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing, Compos. Commun., 9(2018), p. 22.

    Article  Google Scholar 

  106. I. Dinaharan, S.C. Vettivel, M. Balakrishnan, and E.T. Akinlabi, Influence of processing route on microstructure and wear resistance of fly ash reinforced AZ31 magnesium matrix composites, J. Magnes. Alloys, 7(2019), No. 1, p. 155.

    Article  CAS  Google Scholar 

  107. H. Patle, B.R. Sunil, and R. Dumpala, Machining characteristics, wear and corrosion behavior of AZ91 magnesium alloy-fly ash composites produced by friction stir processing, Materialwiss. Werkstofftech., 52(2021), No. 1, p. 88.

    Article  CAS  Google Scholar 

  108. M. Farghadani, F. Karimzadeh, M.H. Enayati, N. Naghshehkesh, and A.O. Moghaddam, Fabrication of AZ91D/Cu/Mg2Cu and AZ91D/Mg2Cu/MgCu2/MgO in situ hybrid surface nanocomposites via friction stir processing, Surf. Topogr.: Metrol. Prop., 8(2020), No. 4, art. No. 045002.

  109. N. Bhadouria, P. Kumar, L. Thakur, S. Dixit, and N. Arora, A study on micro-hardness and tribological behaviour of nano-WC–Co–Cr/multi-walled carbon nanotubes reinforced AZ91D magnesium matrix surface composites, Trans. Indian Inst. Met., 70(2017), No. 9, p. 2477.

    Article  CAS  Google Scholar 

  110. C.I. Chang, Y.N. Wang, H.R. Pei, C.J. Lee, and J.C. Huang, On the hardening of friction stir processed Mg-AZ31 based composites with 5–20% nano-ZrO2 and nano-SiO2 particles, Mater. Trans., 47(2006), No. 12, p. 2942.

    Article  CAS  Google Scholar 

  111. M. Navazani and K. Dehghani, Fabrication of Mg-ZrO2 surface layer composites by friction stir processing, J. Mater. Process. Technol., 229(2016), p. 439.

    Article  CAS  Google Scholar 

  112. Y. Mazaheri, M.M. Jalilvand, A. Heidarpour, and A.R. Jahani, Tribological behavior of AZ31/ZrO2 surface nanocomposites developed by friction stir processing, Tribol. Int., 143(2020), art. No. 106062.

  113. Q.H. Zang, X.W. Li, H.M. Chen, et al., Microstructure and mechanical properties of AZ31/ZrO2 composites prepared by friction stir processing with high rotation speed, Front. Mater., 7(2020), art. No. 278.

  114. K. Qiao, T. Zhang, K.S. Wang, et al., Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite, J. Mater. Res. Technol., 18(2022), p. 1166.

    Article  CAS  Google Scholar 

  115. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, MWCNTs/AZ31 surface composites fabricated by friction stir processing, Mater. Sci. Eng. A, 419(2006), No. 1–2, p. 344.

    Article  Google Scholar 

  116. M. Jamshidijam, A. Akbari-Fakhrabadi, S.M. Masoudpanah, G.H. Hasani, and R.V. Mangalaraja, Wear behavior of multiwalled carbon nanotube/AZ31 composite obtained by friction stir processing, Tribol. Trans., 56(2013), No. 5, p. 827.

    Article  CAS  Google Scholar 

  117. A.A. Nia and S.H. Nourbakhsh, Microstructure and mechanical properties of AZ31/SiC and AZ31/CNT composites produced by friction stir processing, Trans. Indian Inst. Met., 69(2016), No. 7, p. 1435.

    Article  Google Scholar 

  118. S.M. Arab, S.M. Zebarjad, and S.A.J. Jahromi, Fabrication of AZ31/MWCNTs surface metal matrix composites by friction stir processing: Investigation of microstructure and mechanical properties, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5366.

    Article  CAS  Google Scholar 

  119. M. Tabandeh-Khorshid, A. Kumar, E. Omrani, C. Kim, and P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B, 183(2020), art. No. 107664.

  120. Y.M. Xie, X.C. Meng Y.X. Huang, J.C. Li, and J. Cao, Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility, Composites Part B, 177(2019), art. No. 107413.

  121. N. Babu and A. Megalingam, Microstructural, mechanical and tribological characterization of ZrB2 reinforced AZ31B surface coatings made by friction stir processing, J. Adhesion Sci. Technol., 37(2023), No. 2, p. 195.

    Article  CAS  Google Scholar 

  122. K.V. Reddy, R.B. Naik, G.R. Rao, G.M. Reddy, and R.A. Kumar, Microstructure and damping capacity of AA6061/graphite surface composites produced through friction stir processing, Compos. Commun., 20(2020), art. No. 100352.

  123. D.K. Sharma, V. Badheka, V. Patel, and G. Upadhyay, Recent developments in hybrid surface metal matrix composites produced by friction stir processing: A review, J. Tribol., 143(2021), No. 5, art. No. 050801.

  124. M.Y. Zhou, L.B. Ren, L.L. Fan, et al., Progress in research on hybrid metal matrix composites, J. Alloys Compd., 838(2020), art. No. 155274.

  125. F. Khorasani, M. Emamy, M. Malekan, et al., Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg-Al2Ca-Mg2Ca in situ composite by hot extrusion, Mater. Charact., 147(2019), p. 155.

    Article  CAS  Google Scholar 

  126. S. Sharma, A. Handa, S.S. Singh, and D. Verma, Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MW-CNT-graphene-AZ31 magnesium, J. Magnes. Alloys, 7(2019), No. 3, p. 487.

    Article  CAS  Google Scholar 

  127. M.M. Jalilvand, and Y. Mazaheri, Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing, Ceram. Int., 46(2020), No. 12, p. 20345.

    Article  CAS  Google Scholar 

  128. D.H. Lu, Y.H. Jiang, and R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear, 305(2013), No. 1–2, p. 286.

    Article  CAS  Google Scholar 

  129. S. Rathee, S. Maheshwari, and A.N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: A review, Mater. Manuf. Processes, 33(2018), No. 3, p. 239.

    Article  CAS  Google Scholar 

  130. R. Palanivel, P.K. Mathews, N. Murugan, and I. Dinaharan, Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys, Mater. Des., 40(2012), p. 7.

    Article  CAS  Google Scholar 

  131. M. Lotfpour, A. Bahmani, H. Mirzadeh, et al., Effect of microalloying by Ca on the microstructure and mechanical properties of as-cast and wrought Mg-Mg2Si composites, Mater. Sci. Eng. A, 820(2021), art. No. 141574.

  132. A.R. Salasel, A. Abbasi, N. Barri, H. Mirzadeh, M. Emamy, and M. Malekan, Effect of Si and Ni on microstructure and mechanical properties of in situ magnesium-based composites in the as-cast and extruded conditions, Mater. Chem. Phys., 232(2019), p. 305.

    Article  CAS  Google Scholar 

  133. R. Taghiabadi and A. Moharami, Mechanical properties enhancement of Mg-4Si in situ composites by friction stir processing, Mater. Sci. Technol., 37(2021), No. 1, p. 66.

    Article  CAS  Google Scholar 

  134. M. Raeissi and S.H. Nourbaksh, Enhancement of the microstructure homogeneity and mechanical performance of the ascast Mg/Mg2Si in-sttu composite through friction stir processing, Mater. Res. Express, 6(2019), No. 10, art. No. 1065e7.

  135. A. Srinivasan, S. Ningshen, U.K. Mudali, U.T.S. Pillai, and B.C. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics, 15(2007), No. 12, p. 1511.

    Article  CAS  Google Scholar 

  136. K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles-A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57.

    Article  CAS  Google Scholar 

  137. Z. Nasiri, H. Mirzadeh, M.S. Khorrami, and M. Emamy, Synergistic effects of alloying, homogenization, and hot extrusion on the mechanical properties of as-cast Mg-Al-Ca magnesium alloys, Arch. Civ. Mech. Eng., 21(2021), No. 3, art. No. 126.

  138. M.S. Mehranpour, A. Heydarinia, M. Emamy, H. Mirzadeh, A. Koushki, and R. Razi, Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation, Mater. Sci. Eng. A, 802(2021), art. No. 140667.

  139. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248.

    Article  CAS  Google Scholar 

  140. T.G. Langdon, Seventy-five years of superplasticity: Historic developments and new opportunities, J. Mater. Sci., 44(2009), No. 22, p. 5998.

    Article  CAS  Google Scholar 

  141. Z. Savaedi, R. Motallebi, H. Mirzadeh, and M. Malekan, Superplasticity of bulk metallic glasses (BMGs): A review, J. Non Cryst. Solids, 583(2022), art. No. 121503.

  142. R. Motallebi, Z. Savaedi, and H. Mirzadeh, Superplasticity of high-entropy alloys: A review, Arch. Civ. Mech. Eng., 22(2021), No. 1, p. 1.

    Article  Google Scholar 

  143. G. Giuliano, Superplastic Forming of Advanced Metallic Materials: Methods and Applications, Woodhead Publishing Limited, Cambridge, 2011.

    Book  Google Scholar 

  144. M. Sabbaghian and R. Mahmudi, Superplasticity of the finegrained friction stir processed Mg-3Gd-1Zn sheets, Mater. Charact., 172(2021), art. No. 110902.

  145. M.M. Hoseini-Athar, R. Mahmudi, R.P. Babu, and P. Hedström, Microstructure and superplasticity of Mg-2Gd-xZn alloys processed by equal channel angular pressing, Mater. Sci. Eng. A, 808(2021), art. No. 140921.

  146. A. Mohan, W. Yuan, and R.S. Mishra, High strain rate superplasticity in friction stir processed ultrafine grained Mg-Al-Zn alloys, Mater. Sci. Eng. A, 562(2013), p. 69.

    Article  CAS  Google Scholar 

  147. F. Chai, D.T. Zhang, Y.Y. Li, and W.W. Zhang, High strain rate superplasticity of a fine-grained AZ91 magnesium alloy prepared by submerged friction stir processing, Mater. Sci. Eng. A, 568(2013), p. 40.

    Article  CAS  Google Scholar 

  148. R.B. Figueiredo and T.G. Langdon, Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing, Scripta Mater., 61(2009), No. 1, p. 84.

    Article  CAS  Google Scholar 

  149. R. Motallebi, Z. Savaedi, and H. Mirzadeh, Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: A review, J. Mater. Res. Technol., 20(2022), p. 1873.

    Article  CAS  Google Scholar 

  150. R. Motallebi, Z. Savaedi, and H. Mirzadeh, Additive manufacturing–A review of hot deformation behavior and constitutive modeling of flow stress, Curr. Opin. Solid State Mater. Sci., 26(2022), No. 3, art. No. 100992.

  151. H. Khodashenas and H. Mirzadeh, Post-processing of additively manufactured high-entropy alloys - A review, J. Mater. Res. Technol., 21(2022), p. 3795.

    Article  CAS  Google Scholar 

  152. K. Moeinfar, F. Khodabakhshi, S.F. Kashani-bozorg, M. Mohammadi, and A.P. Gerlich, A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys, and titanium alloys, J. Mater. Res. Technol., 16(2022), p. 1029.

    Article  CAS  Google Scholar 

  153. S. Rathee, M. Srivastava, P.M. Pandey, A. Mahawar, and S. Shukla, Metal additive manufacturing using friction stir engineering: A review on microstructural evolution, tooling and design strategies, CIRP J. Manuf. Sci. Technol., 35(2021), p. 560.

    Article  Google Scholar 

  154. Y.H. Ho, K. Man, S.S. Joshi, et al., In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy–hydroxyapatite composites, Bioact. Mater., 5(2020), No. 4, p. 891.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Conflict of Interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzadeh, H. Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review. Int J Miner Metall Mater 30, 1278–1296 (2023). https://doi.org/10.1007/s12613-022-2589-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2589-y

Keywords

Navigation