Skip to main content

Advertisement

Log in

Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To effectively separate and recover Co(II) from the leachate of spent lithium-ion battery cathodes, we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system. NO 2 combines with Co(II) to form an anion [Co(NO2)3], and it is then extracted by N263. The extraction of Co(II) is related to the concentration of NO 2 . The extraction efficiency of Co(II) reaches the maximum of 99.16%, while the extraction efficiencies of Ni(II), Mn(II), and Li(I) are 9.27%–9.80% under the following conditions: 30vol% of N263 and 15vol% of iso-propyl alcohol in sulfonated kerosene, the volume ratio of the aqueous-to-organic phase is 2:1, the extraction time is 30 min, and 1 M sodium nitrite in 0.1 M HNO3. The theoretical stages require for the Co(II) extraction are performed in the McCabe—Thiele diagram, and the extraction efficiency of Co(II) reaches more than 99.00% after three-stage counter-current extraction with Co(II) concentration of 2544 mg/L. When the HCl concentration is 1.5 M, the volume ratio of the aqueous-to-organic phase is 1:1, the back-extraction efficiency of Co(II) achieves 91.41%. After five extraction and back-extraction cycles, the Co(II) extraction efficiency can still reach 93.89%. The Co(II) extraction efficiency in the actual leaching solution reaches 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Peek, T. Åkre, and E. Asselin, Technical and business considerations of cobalt hydrometallurgy, JOM, 61(2009), No. 10, p. 43.

    Article  CAS  Google Scholar 

  2. Q. Dehaine, L.T. Tijsseling, H.J. Glass, T. Törmänen, and A.R. Butcher, Geometallurgy of cobalt ores: A review, Miner. Eng., 160(2021), art. No. 106656.

  3. M. Chandra, D.W. Yu, Q.H. Tian, and X.Y. Guo, Recovery of cobalt from secondary resources: A comprehensive review, Miner. Process. Extr. Metall. Rev., 43(2022), 6, p. 679.

    Article  Google Scholar 

  4. B. Wassink, D. Dreisinger, and J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57(2000), No. 3, p. 235.

    Article  CAS  Google Scholar 

  5. R. Golmohammadzadeh, F. Faraji, and F. Rashchi, Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136(2018), p. 418.

    Article  CAS  Google Scholar 

  6. M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, and P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 4(2019), No. 4, p. 339.

    Article  CAS  Google Scholar 

  7. W.Y. Wang, C.H. Yen, and J.K. Hsu, Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction, Sep. Sci. Technol., 55(2020), No. 16, p. 3028.

    Article  CAS  Google Scholar 

  8. X.H. Zheng, Z.W. Zhu, X. Lin, et al., A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(2018), No. 3, p. 361.

    Article  CAS  Google Scholar 

  9. X.L. Zeng, J.H. Li, and N. Singh, Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol., 44(2014), No. 10, p. 1129.

    Article  CAS  Google Scholar 

  10. F. Gu, J.F. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, and P. Hall, An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China, J. Clean. Prod., 161(2017), p. 765.

    Article  Google Scholar 

  11. L. Sun and K.Q. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage., 32(2012), No. 8, p. 1575.

    Article  CAS  Google Scholar 

  12. A.M. Bernardes, D.C.R. Espinosa, and J.A.S. Tenório, Recycling of batteries: A review of current processes and technologies, J. Power Sources, 130(2004), No. 1–2, p. 291.

    Article  CAS  Google Scholar 

  13. L. Li, J. Ge, R.J. Chen, F. Wu, S. Chen, and X.X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manage., 30(2010), No. 12, p. 2615.

    Article  CAS  Google Scholar 

  14. J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, and B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177(2008), No. 2, p. 512.

    Article  CAS  Google Scholar 

  15. L. Chen, X.C. Tang, Y. Zhang, L.X. Li, Z.W. Zeng, and Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(2011), No. 1–2, p. 80.

    Article  CAS  Google Scholar 

  16. M.B.J.G. Freitas, V.G. Celante, and M.K. Pietre, Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits, J. Power Sources, 195(2010), No. 10, p. 3309.

    Article  CAS  Google Scholar 

  17. J.G. Kang, G. Senanayake, J. Sohn, and S.M. Shin, Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometallurgy, 100(2010), No. 3–4, p. 168.

    Article  CAS  Google Scholar 

  18. H.Y. Wang, K. Huang, Y. Zhang, et al., Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chem. Eng., 5(2017), No. 12, p. 11489.

    Article  CAS  Google Scholar 

  19. X.P. Chen, Y.B. Chen, T. Zhou, D.P. Liu, H. Hu, and S.Y. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38(2015), p. 349.

    Article  CAS  Google Scholar 

  20. N. Ocaña and F.J. Alguacil, Cobalt—manganese separation: The extraction of cobalt(II) from manganese sulphate solutions by cyanex 301, J. Chem. Technol. Biotechnol., 73(1998), No. 3, p. 211.

    Article  Google Scholar 

  21. B. Pośpiech and W. Walkowiak, Separation of copper(II), co-balt(II) and nickel(II) from chloride solutions by polymer inclusion membranes, Sep. Purif. Technol., 57(2007), No. 3, p. 461.

    Article  Google Scholar 

  22. A.H. Blitz-Raith, R. Paimin, R.W. Cattrall, and S.D. Kolev, Separation of cobalt(II) from nickel(II) by solid-phase extraction into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta, 71(2007), No. 1, p. 419.

    Article  CAS  Google Scholar 

  23. H.C. Kao and R.S. Juang, Kinetic analysis of non-dispersive solvent extraction of concentrated Co(II) from chloride solutions with Aliquat 336: Significance of the knowledge of reaction equilibrium, J. Membr. Sci., 264(2005), No. 1–2, p. 104.

    Article  CAS  Google Scholar 

  24. M. Majdan, J. Mierzwa, and P. Sadowski, On the separation of Co and Ni from chloride media with Aliquat 336-TBP and Aliquat 336-TOPO, Monatsh. Chem., 128(1997), No. 2, p. 113.

    Article  CAS  Google Scholar 

  25. N.A. Milevskii, I.V. Zinov’eva, Y.A. Zakhodyaeva, and A.A. Voshkin, Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent, Hydrometallurgy, 207(2022), art. No. 105777.

  26. Y.Z. Wei, T. Arai, M. Kumagai, and Q.M. Feng, Adsorption behavior of various metal ions in nitrite medium and separation of some metals by anion exchange, J. Ion Exch., 14(2003), Suppl., p. 305.

    Article  Google Scholar 

  27. H. Chen, S. Gu, Y.X. Guo, et al., Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3, Hydrometallurgy, 205(2021), art. No. 105746.

  28. J.R. Ju, Y.L. Feng, H.R. Li, et al., Separation of Cu, Co, Ni and Mn from acid leaching solution of ocean cobalt-rich crust using precipitation with Na2S and solvent extraction with N235, Korean J. Chem. Eng., 39(2022), No. 3, p. 706.

    Article  CAS  Google Scholar 

  29. Y.J. Yang, Y.N. Yang, C.L. He, et al., The adsorption and desorption behavior and mechanism research of cobalt, nickel and copper in nitrite—sulfuric acid system, Sep. Sci. Technol., 57(2022), No. 12, p. 1848.

    Article  CAS  Google Scholar 

  30. Z.S. Liu, J. Huang, Y.M. Zhang, et al., Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336, Sep. Purif. Technol., 249(2020), art. No. 116867.

  31. K. Wang, G.Q. Zhang, M.Z. Luo, and M. Zeng, Separation of Co and Mn from acetic acid leaching solution of spent lithiumion battery by Cyanex272, J. Environ. Chem. Eng., 10(2022), No. 5, art. No. 108250.

  32. A.A. Nayl, M.M. Hamed, and S.E. Rizk, Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries, J. Taiwan Inst. Chem. Eng., 55(2015), p. 119.

    Article  CAS  Google Scholar 

  33. H.E. Rizk, Y.A. El-Nadi, and N.E. El-Hefny, Extractive separation of scandium from strongly alkaline solution by quaternary ammonium salt, Solvent Extr. Ion Exch., 38(2020), No. 3, p. 350.

    Article  CAS  Google Scholar 

  34. H. Zhang, C.M. Li, X.J. Chen, et al., Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water, J. Colloid Interface Sci., 615(2022), p. 110.

    Article  CAS  Google Scholar 

  35. J.J. Meng, C.L. He, Y.J. Li, et al., Enhanced adsorption and separation of gallium using silica-based P507-TBP/SiO2-P adsorbent from sulfuric acid solution, Microporous Mesoporous Mater., 314(2021), art. No. 110859.

  36. L.Z. Jiao, D.M. Dong, W.G. Zheng, et al., Determination of nitrite using UV absorption spectra based on multiple linear regression, Asian J. Chem., 25(2013), No. 4, p. 2273.

    Article  CAS  Google Scholar 

  37. H. Benalia and D. Barkat, Solvent extraction studies of cobalt(II) by capric acid from sodium sulfate solution, J. Dispersion Sci. Technol., 38(2017), No. 9, p. 1247.

    Article  CAS  Google Scholar 

  38. J. Cañón and A.V. Teplyakov, XPS characterization of cobalt impregnated SiO 2 and γ-Al2O3, Surf. Interface Anal., 53(2021), No. 5, p. 475.

    Article  Google Scholar 

  39. G. Kowalski, J. Pielichowski, and M. Grzesik, Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions, Sci. World J., 2014(2014), art. No. 648949.

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 51804084), the Natural Science Foundation of Guangxi Province, China (No. 2021GXNSFAA220096), and the Science and Technology Major Project of Guangxi Province, China (No. AA172 04100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin He.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Supplementary Information

12613_2022_2571_MOESM1_ESM.docx

Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, Y., He, C. et al. Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media. Int J Miner Metall Mater 30, 897–907 (2023). https://doi.org/10.1007/s12613-022-2571-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2571-8

Keywords

Navigation