Skip to main content

Advertisement

Log in

One-step electrochemical reduction of stibnite concentrate in molten borax

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, antimony production from a stibnite concentrate (Sb2S3) was performed in one step using a molten salt electrolysis method and borax as an electrolyte. Electrochemical reduction of the stibnite concentrate was performed at 800°C under galvanostatic conditions and explained in detail by the reactions and intermediate compounds formed in the borax. The effects of current density (100–800 mA·cm−2) and electrolysis time (10–40 min) on cathodic current efficiency and antimony yields were systematically investigated. During the highest current efficiency, which was obtained at 600 mA·cm−2, direct metal production was possible with 62% cathodic current efficiency and approximately 6 kWh/kg energy consumption. At the end of the 40-min electrolysis duration at 600 mA·cm−2 current density, antimony reduction reached 30.7 g and 99% of the antimony fed to the cell was obtained as metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Şahin and H. Kaya, Mechanical properties of directionally solidified lead-antimony alloys, Int. J. Miner. Metall. Mater., 18(2011), p. 582.

    Article  Google Scholar 

  2. Y.H. Zhao, X.B. Wang, X.H. Du, and C. Wang, Effects of Sb and heat treatment on the micro structure of Al-15.5wt%Mg2Si alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 653.

    Article  CAS  Google Scholar 

  3. J. Xie, W.T. Song, G.S. Cao, and X.B. Zhao, One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 542.

    Article  CAS  Google Scholar 

  4. C.G. Anderson, The metallurgy of antimony, Geochemistr., 72(2012), p. 3.

    Article  CAS  Google Scholar 

  5. C.G. Anderson, SME Mineral Processing and Extractive Metallurgy Handbook: Antimony Production and Commodites, R.C. Dunne, S.K. Kawatra, C.A. Young, eds., Society for Mining, Metallurgy and Exploration, Englewood, 2019, p. 1557.

  6. R.S. Multani, T. Feldmann, and G.P. Demopoulos, Antimony in the metallurgical industry: A review of its chemistry and environmental stabilization options, Hydrometallurg., 164(2016), p. 141.

    Article  CAS  Google Scholar 

  7. Y. Li, Y.M. Chen, H.T. Xue, C.B. Tang, S.H. Yang, and M.T. Tang, One-step extraction of antimony in low temperature from stibnite concentrate using iron oxide as sulfur-fixing agent, Metals, 6(2016), No. 7, p. 153.

    Article  Google Scholar 

  8. L.G. Ye, C.B. Tang, Y.M. Chen, S.H. Yang, J.G. Yang, and W.H. Zhang, One-step extraction of antimony from low-grade stibnite in sodium carbonate-sodium chloride binary molten salt, J. Clean. Prod., 93(2015), p. 134.

    Article  CAS  Google Scholar 

  9. G.M. Li, D.H. Wang, X.B. Jin, and G.Z. Chen, Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission, Electrochem. Commun., 9(2007), No. 8, p. 1951.

    Article  CAS  Google Scholar 

  10. A. Vignes, Extractive Metallurgy 3: Molten Salt Electrolysis Operations, John Wiley & Sons Inc., New Jersey, 2013, p. 286.

    Book  Google Scholar 

  11. S. Sokhanvaran, S.K. Lee, G. Lambotte, and A. Allanore, Electrochemistry of molten sulfides: Copper extraction from BaS-Cu2S, J. Electrochem. Soc., 163(2016), p. 115.

    Article  Google Scholar 

  12. M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochemical sulfur removal from chalcopyrite in molten mCl-KCl, Electrochim. Acta, 213(2016), p. 148.

    Article  CAS  Google Scholar 

  13. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), p. 361.

    Article  CAS  Google Scholar 

  14. Z.Q. Li, L.Y. Ru, C.G. Bai, N. Zhang, and H.H. Wang, Effect of sintering temperature on the electrolysis of TiO2, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 636.

    Article  CAS  Google Scholar 

  15. S.L. Wang, S.C. Li, L.F. Wan, and C.H. Wang, Elec-tro-deoxidation of V2O3 in molten CaCl2-NaCl-CaO, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 212.

    Article  Google Scholar 

  16. P.V. Suneesh, T.G. Satheesh Babu, and T. Ramachandran, Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 909.

    Article  CAS  Google Scholar 

  17. J.X. Song, Q.Y. Wang, G.J. Hu, X.B. Zhu, S.Q. Jiao, and H.M. Zhu, Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 660.

    Article  CAS  Google Scholar 

  18. H.P. Gao, M.S. Tan, L.B. Rong, Z.Y. Wang, J.J. Peng, X.B. Jin, and G.Z. Chen, Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl-NaCl, Phys. Chem. Chem.Phys., 16(2014), No. 36, p. 19514.

    Article  CAS  Google Scholar 

  19. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi, and R.O. Suzuki, Reduction of TiS2 by OS process in CaCl2 melt, ECS Trans., 75(2013), No. 15, p. 507.

    Article  Google Scholar 

  20. T. Matsuzaki, S. Natsui, T. Kikuchi, and R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans., 58(2017), No. 3, p. 371.

    Article  CAS  Google Scholar 

  21. Y. Xiao, D.W. Plas, J. Bohte, S.C. Lans, A. van Sandwijk, and M.A. Reuter, Electrowinning Al from A12S3 in molten salt, J. Electrochem. Soc., 154(2007), No. 6, p. 334.

    Article  Google Scholar 

  22. T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.

    Article  CAS  Google Scholar 

  23. X.L. Ge, X.D. Wang, and S. Seetharaman, Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl, Electrochim. Acta, 54(2009), No. 18, p. 4397.

    Article  CAS  Google Scholar 

  24. X.L. Ge and S. Seetharaman, The salt extraction process - a novel route for metal extraction Part 2 — Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93.

    Article  CAS  Google Scholar 

  25. J.K. Qu, H.W. Xie, Q.S. Song, Z.Q. Ning, H.J. Zhao, and H.Y. Yin, Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions, Electrochem. Commun., 92(2018), p. 14.

    Article  CAS  Google Scholar 

  26. H. Xie, J. Qu, Z. Ning, B. Li, Q. Song, H. Zhao, and H. Yin, Electrochemical Co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts, J. Electrochem. Soc., 165(2018), No. 11, p. 578.

    Article  Google Scholar 

  27. D. Wang, C.Y. Lu, X.L. Zou, K. Zheng, Z.F. Zhou, and X.G. Lu, Electrolysis of converter matte in molten CaCl2-NaCl, J. Mater. Sci. Chem. Eng., 6(2018), No. 1, art. No. 82412.

  28. J.G. Yang, S.H. Yang, and C.B. Tang, The membrane electrowinning separation of antimony from a stibnite concentrate, Metall. Mater. Trans., 41(2010), No. 3, p. 527.

    Article  Google Scholar 

  29. T. Yanagase and G. Derge, Electrochemical characteristics of melts in the Sb-Sb2S3 system, J. Electrochem. Soc., 103(1956), No. 5, p. 303.

    Article  CAS  Google Scholar 

  30. H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.

  31. J.K. Qu, X.Y Li, H.W. Xie, Z.Q. Ning, Q.S. Song, H.J. Zhao, and H.Y. Yin, Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions, J. Electrochem. Soc., 166(2019), No. 2, p. 62.

    Article  Google Scholar 

  32. F. Colom and M. de la Cruz, Antimony electrowinning from molten sulphide, Electrochim. Acta, 14(1969), No. 3, p. 217.

    Article  CAS  Google Scholar 

  33. S.A. Awe and Å. Sandström, Electrowinning of antimony from model sulphide alkaline solutions, Hydrometallurg, 137(2013), p. 60.

    Article  CAS  Google Scholar 

  34. Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, and Q.F. Shen, Effect of NaN03 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Eti Bakır Halıköy İşletmeleri A.S for supplying stibnite concentrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levent Kartal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartal, L., Daryal, M.B., Şireli, G.K. et al. One-step electrochemical reduction of stibnite concentrate in molten borax. Int J Miner Metall Mater 26, 1258–1265 (2019). https://doi.org/10.1007/s12613-019-1867-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1867-9

Keywords

Navigation