Skip to main content
Log in

Oxidation behavior of artificial magnetite pellets

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The oxidation behavior of artificial magnetite pellets was investigated through measurements of the oxidation degree and mineralogical analysis. The results show that artificial magnetite pellets are much easier to oxidize than natural magnetite. The oxidation is controlled through two different reaction mechanisms. The oxidation of artificial magnetite is dominated by internal diffusion, with an activation energy of 8.40 kJ/mol, at temperatures less than 800°C, whereas it is controlled by chemical reaction, with a reaction activation energy of 67.79 kJ/mol, at temperatures greater than 800°C. In addition, factors such as the oxygen volume fraction and the pellet diameter strongly influence the oxidation of artificial magnetite: a larger oxygen volume fraction and a smaller pellet diameter result in a much faster oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cheng, Q.G. Xue, G. Wang, Y.Y. Zhang, and J.S. Wang, Phosphorus migration during direct reduction of coal composite high-phosphorus iron ore pellets, Metall. Mater. Trans. B, 47(2016), No. 1, p. 154.

    Article  Google Scholar 

  2. X.L. Zhou, D.Q. Zhu, J. Pan, Y.H. Luo, and X.Q. Liu, Upgrading of high-aluminum hematite-limonite ore by high temperature reduction-wet magnetic separation process, Metals, 6(2016), No. 3, p. 57.

    Article  Google Scholar 

  3. D.Q. Zhu, Q. Zhao, G.Z. Qiu, J. Pan, Z.Q. Wang, and C.J. Pan, Magnetizing roasting-magnetic separation of limonite ores from Anhui province in east China, J. Univ. Sci. Technol. Beijing, 32(2010), No. 6, p. 713.

    Google Scholar 

  4. H. Yang, Y. Rong, C. Han, R. Tang, X.X. Xue, Y. Li, and Y.N. Li, Magnetizing roast and magnetic separation of iron in rare-earth tailings, J. Cent. South Univ. Sci. Technol., 23(2016), No. 8, p. 1899.

    Article  Google Scholar 

  5. L.Q. Luo, M. Chen, C. Yang, J. Xu, and B. Liu, Characteristics of magnetic roasting and analysis of phase transformation process of oolitic iron ore, J. Cent. South Univ. Sci. Technol., 46(2015), No. 1, p. 6.

    Google Scholar 

  6. H.Q. Zhang, Concentration on limonitic iron ore by multi-grade magnetic roasting–low intensity magnetic separation, Adv. Mater. Res., 933(2014), p. 125.

    Article  Google Scholar 

  7. R. Wang, Y.X. Han, Y.J. Li, and Y.S. Zhang, Roasting on magnetic properties of oolitic hematite roasted by suspension roasting furnace, J. Northeast Univ. Nat. Sci., 36(2015), No. 7, p. 1024.

    Google Scholar 

  8. S.S. Guo, Research on Magnetic Property and Magnetic Separation Behavior of Artificial Magnetite and Natural Magnetite [Dissertation], Guangxi University, Nanning, 2011, p. 10.

    Google Scholar 

  9. C.Z. Wu, Research on Flotation Behavior and Mechanism of Artificial Magnetite and Natural Magnetite [Dissertation], Guangxi University, Nanning, 2012, p. 55.

    Google Scholar 

  10. H.Q. Zhang and F.L. Wang, Analysis of surface wettability of synthetic magnetite, J. Wuhan Univ. Technol. Mater. Sci. Ed., 29(2014), No. 4, p. 679.

    Article  Google Scholar 

  11. H.Q. Zhang and F.L. Wang, Regulation of mineral composition and phase transformation in hematite and limonite magnetic roasting process, J. Iron Steel Res., 26(2014), No. 7, p. 10.

    Article  Google Scholar 

  12. L.Q. Luo, Y.F. Yu, and Y.J. Shang, Physical and chemistry characteristics on flash magnetic roasting of complicated iron minerals, China Min. Mag., 18(2009), No. 11, p. 84.

    Google Scholar 

  13. H.Q. Zhang and L.Q. Luo, Theories and Process of Pelletizing and Sintering, Chemical Industry Press, Beijing, 2015, p. 15.

    Google Scholar 

  14. H.Q. Zhang, Technology and application of multi-grades dynamic state magnetizing roasting, Met. Mine, 9(2012), p. 123.

    Google Scholar 

  15. Z.C. Huang, L.L. Lv, L.Z. Zhu, and T. Jiang, Effect of neonatal Fe2O3 on preheated magnetite concentrate pellets strength, J. Cent. South Univ. Sci. Technol., 42(2011), No. 5, p. 1179.

    Google Scholar 

  16. J.P. Sanders and P.K. Gallagher, Thermomagnetometric evidence of γ-Fe2O3 as an intermediate in the oxidation of magnetite, Thermochim. Acta, 406(2003), No. 1-2, p. 241.

    Article  Google Scholar 

  17. D.Q. Zhu, Y.H. Luo, J. Pan, and W. T. Zhou, Study on high temperature oxidation kinetics of magnetite, Met. Mine, 2011, No. 4, p. 89.

    Google Scholar 

  18. R.Q. Liang, S. Yang, F.S. Yan, and J.C. He, Kinetics of oxidation reaction for magnetite pellets, J. Iron Steel Res. Int., 20(2013), No. 9, p. 16.

    Article  Google Scholar 

  19. Y.M. Chen and J. Li, Crystal rule of Fe2O3 in oxidized pellet, J. Cent. South Univ. Sci. Technol., 38(2007), No. 1, p. 72.

    Google Scholar 

  20. G.Z. Qiu, D.Q. Zhu, J. Pan, C.A. Wang, Y.F. Guo, T. Jiang, C.F. Hu, J. Clout, and F.H. Shu, Improving the oxidizing kinetics of pelletization of magnetite concentrate by high press roll grinding, ISIJ Int., 44(2004), No. 1, p. 69.

    Article  Google Scholar 

  21. Y.X. Hua, Introduction to Kinetics of Process Metallurgy, Metallurgical Industry Press, Beijing, 2004, p. 186.

    Google Scholar 

  22. H.Q. Zhang, M.M. Lu, and J.T. Fu, Oxidation and roasting characteristics of artificial magnetite pellets, J. Cent. South Univ. Sci. Technol., 23(2016), No. 11, p. 2999.

    Article  Google Scholar 

  23. T.K.S. Kumar, N.N. Viswanathan, H.M. Ahmed, C. Andersson, and B. Björkman, Estimation of sintering kinetics of oxidized magnetite pellet using optical dilatometer, Metall. Mater. Trans. B, 46(2014), No. 2, p. 635.

    Article  Google Scholar 

  24. L.U. Buiyan, J. Mouzon, S.P.E. Forsmo, and J. Hedlund, Quantitative image analysis of bubble cavities in iron ore green pellets, Powder Technol., 214(2011), No. 3, p. 306.

    Article  Google Scholar 

  25. M. Tang, H.J. Cho, and P.C. Pistorius, Early gaseous oxygen enrichment to enhance magnetite pellet oxidation, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1304.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51474161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-quan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hq., Fu, Jt. Oxidation behavior of artificial magnetite pellets. Int J Miner Metall Mater 24, 603–610 (2017). https://doi.org/10.1007/s12613-017-1442-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1442-1

Keywords

Navigation