Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A biodegradable Zn alloy, Zn–1.6Mg, with the potential medical applications as a promising coating material for steel components was studied in this work. The alloy was prepared by three different procedures: gravity casting, hot extrusion, and a combination of rapid solidification and hot extrusion. The samples prepared were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. Vickers hardness, tensile, and compressive tests were performed to determine the samples’ mechanical properties. Structural examination reveals that the average grain sizes of samples prepared by gravity casting, hot extrusion, and rapid solidification followed by hot extrusion are 35.0, 9.7, and 2.1 μm, respectively. The micrograined sample with the finest grain size exhibits the highest hardness (Hv = 122 MPa), compressive yield strength (382 MPa), tensile yield strength (332 MPa), ultimate tensile strength (370 MPa), and elongation (9%). This sample also demonstrates the lowest work hardening in tension and temporary softening in compression among the prepared samples. The mechanical behavior of the samples is discussed in relation to the structural characteristics, Hall–Petch relationship, and deformation mechanisms in fine-grained hexagonal-close-packed metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Lebanon, Indiana, USA, 1996, p. 572.

    Google Scholar 

  2. C.Z. Yao, Z.C. Wang, S.L. Tay, and W. Gao, Effects of Mg on morphologies and properties of hot dipped Zn–Mg coatings, Surf. Coat. Technol., 260(2014), p. 39.

    Article  Google Scholar 

  3. C.Z. Yao, W.W. Chen, and W. Gao, Codeposited Zn–Mg coating with improved mechanical and anticorrosion properties, Surf. Coat. Technol., 219(2013), p. 126.

    Article  Google Scholar 

  4. T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions, Corros. Sci., 50(2008), No. 8, p. 2216.

    Article  Google Scholar 

  5. T. Prosek, D. Persson, J. Stoulil, and D. Thierry, Composition of corrosion products formed on Zn–Mg, Zn–Al and Zn–Al–Mg coatings in model atmospheric conditions, Corros. Sci., 86(2014), p. 231.

    Article  Google Scholar 

  6. M. Dutta, A.K. Halder, and S.B. Singh, Morphology and properties of hot dip Zn–Mg and Zn–MgAl alloy coatings on steel sheet, Surf. Coat. Technol., 205(2010), No. 7, p. 2578.

    Article  Google Scholar 

  7. M. Vlot, R. Bleeker, T. Maalman, and E. van Perlstein, MagiZincTM: a new generation of hot-dip galvanised products, [in] Proceedings of the Galvanized Steel Sheet Forum, Dusseldorf, Germany, 2006.

    Google Scholar 

  8. T. Koll, K. Ullrich, J. Faderl, J. Hagler, and A. Spalek, Properties and potential applications of ZnMg-alloy-coatings on steel sheet by PVD, [in] Proceedings of the Galvatech ′04, International Conference on Zinc and Zinc Alloy Coated Steel Sheet, 6th, Chicago, USA, 2004, p. 803.

    Google Scholar 

  9. C. Schwerdt, M. Riemer, S. Koehler, B. Schuhmacher, M. Steinhorst, and A. Zwick, A study of the application related properties of novel Zn–Mg coated steel sheet produced in a continuous pilot line, [in] Proceedings of the Galvatech ′04, International Conference on Zinc and Zinc Alloy Coated Steel Sheet, 6th, Chicago, USA, 2004, p. 783.

    Google Scholar 

  10. B. Schuhmacher, C. Schwerdt, U. Seyfert, and O. Zimmer, Producing a flat steel product, which comprises base layer composed of steel material and multilayer anti-corrosion coating, comprises applying zinc layer to base layer by electrolytic coating, and applying aluminum layer to zinc layer, Surf. Coat. Technol., 163(2003), p. 703.

    Article  Google Scholar 

  11. A.E. Ares and C.E. Schvezov, The effect of structure on tensile properties of directionally solidified Zn-based alloys, J. Cryst. Growth, 318(2011), No. 1, p. 59.

    Article  Google Scholar 

  12. A.E. Ares and L.M. Gassa, Corrosion susceptibility of Zn–Al alloys with different grains and dendritic microstructures in Nacl solutions, Corros. Sci., 59(2012), No. 2-3, p. 290.

    Article  Google Scholar 

  13. A.E. Ares, L.M. Gassa, C.E. Schvezov, and M.R. Rosenberger, Corrosion and wear resistance of hypoeutectic Zn–Al alloys as a function of structural features, Mater. Chem. Phys., 136(2012), No. 2-3, p. 394.

    Article  Google Scholar 

  14. C.Z. Yao, Z.C. Wang, S.L. Tay, T.P. Zhu, and W. Gao, Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy, J. Alloys Compd., 602(2014), p. 101.

    Article  Google Scholar 

  15. D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation, Acta Biomater., 7(2011), No. 9, p. 3515.

    Article  Google Scholar 

  16. P.K. Bowen, J. Drelich, and J. Goldman, A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior, Mater. Sci. Eng. C, 33(2013), No. 8, p. 5064.

    Article  Google Scholar 

  17. W.F. Gale and T.C. Totemeier, Smithells Metals Reference Book, 8th Ed., Elsevier, Oxford, 2004.

    Google Scholar 

  18. J. Kubásek, I. Pospíšilová, D. Vojtěch, E. Jablonská, and T. Ruml, Structural, mechanical and cytotoxicity characterization of as-cast biodegradable Zn–xMg (x=0.8–8.3%) alloys, Mater. Tehnol., 48(2014), No. 5, p. 623.

    Google Scholar 

  19. H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci., 33(1989), No. 4, p. 223.

    Article  Google Scholar 

  20. C. Suryanarayana and C.C. Koch, Nanocrystalline materials: current research and future directions, Hyperfine Interact., 130(2000), p. 5.

    Article  Google Scholar 

  21. M.V. Akdepniz and J.V. Wood, Microstructures and phase selection in rapidly solidified Zn–Mg alloys, J. Mater. Sci., 31(1996), No. 2, p. 54.

    Article  Google Scholar 

  22. L.B. Tong, M.Y. Zheng, S.W. Xu, X.S. Hu, K. Wu, S. Kamado, G.J. Wang, and X.Y. Lv, Room-temperature compressive deformation behavior of Mg–Zn–Ca alloy processed by equal channel angular pressing, Mater. Sci. Eng. A, 528(2010), No. 2, p. 672.

    Article  Google Scholar 

  23. G. Caglioti, A. Paoletti, and F.P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum., 3(1958), No. 4, p. 223.

    Article  Google Scholar 

  24. H. Mueller and F. Haessner, Influence of grain size and texture on the flow stress of zinc, Scripta Metall., 15(1981), No. 5, p. 487.

    Article  Google Scholar 

  25. H. Naziri and R. Pearce, The effect of grain size on workhardening and superplasticity in Zn/0.4%Al alloy, Scripta Metall., 3(1969), No. 11, p. 811.

    Article  Google Scholar 

  26. B. Srinivasarao, A.P. Zhilyaev, T.G. Langdon, and M.T. Pérez-Prado, On the relation between the microstructure and the mechanical behavior of pure Zn processed by high pressure torsion, Mater. Sci. Eng. A, 562(2013), p. 196.

    Article  Google Scholar 

  27. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter, On the validity of the hall-petch relationship in nanocrystalline materials, Scripta Metall., 23(1989), No. 10, p. 1679.

    Article  Google Scholar 

  28. C.E. Carlton and P.J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater., 55(2007), No. 11, p. 3749.

    Article  Google Scholar 

  29. X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, and A.K. Mukherjee, Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn, Acta Mater., 50(2002), No. 19, p. 4823.

    Article  Google Scholar 

  30. B.L. Zheng, O. Ertorer, Y. Li, Y.Z. Zhou, S.N. Mathaudhu, C.Y.A. Tsao, and E.J. Lavernia, High strength, nano-structured Mg–Al–Zn alloy, Mater. Sci. Eng. A, 528(2011), No. 4-5, p. 2180.

    Article  Google Scholar 

  31. H.M. Ledbetter, Elastic properties of zinc: a compilation and a review, J. Phys. Chem. Ref. Data, 6(1977), No. 4, p. 1181.

    Article  Google Scholar 

  32. ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, Ohio, 1990, p. 1328.

    Google Scholar 

  33. J.G. Antonopoulos, Th. Karakostas, Ph. Komninou, and P. Delavignette, Dislocation movements and deformation twinning in zinc, Acta Metall., 36(1988), No. 9, p. 2493.

    Article  Google Scholar 

  34. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 419(2002), No. 6910, p. 912.

    Article  Google Scholar 

  35. L. Zhang, A.M. Elwazri, T. Zimmerly, and M. Brochu, Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique, Mater. Sci. Eng. A, 487(2008), No. 1-2, p. 219.

    Article  Google Scholar 

  36. L. Zhang, A.M. Elwazri, T. Zimmerly, and M. Brochu, Shear punch testing and fracture toughness of bulk nanostructured silver, Mater. Des., 30(2009), No. 5, p. 1445.

    Article  Google Scholar 

  37. M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, 12(1981), No. 3, p. 409.

    Article  Google Scholar 

  38. N. Munroe, X.L. Tan, and H.C. Gu, Orientation dependence of slip and twinning in HCP metals, Scripta Mater., 36(1997), No. 12, p. 1383.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kubásek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubásek, J., Vojtěch, D., Pospíšilová, I. et al. Microstructure and mechanical properties of the micrograined hypoeutectic Zn–Mg alloy. Int J Miner Metall Mater 23, 1167–1176 (2016). https://doi.org/10.1007/s12613-016-1336-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1336-7

Keywords

Navigation