Skip to main content
Log in

Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

An iron-silicate slag, from a zinc-copper smelting process, and mixtures of this slag with 5wt%, 10wt%, and 15wt% alumina addition were re-melted, semi-rapidly solidified, and characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction. The FactSage™6.2 thermodynamic package was applied to compare the stable phases at equilibrium conditions with experimental characterization. A standard European leaching test was also carried out for all samples to investigate the changes in leaching behaviour because of the addition of alumina. Results show that the commonly reported phases for slags from copper and zinc production processes (olivine, pyroxene, and spinel) are the major constituents of the current samples. A correlation can be seen between mineralogical characteristics and leaching behaviours. The sample with 10wt% alumina addition, which contains high amounts of spinels and lower amounts of the other soluble phases, shows the lowest leachabilities for most of the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Petkovic, C.J. Engelsen, A. Håφya, and G. Breedveld, Environmental impact from the use of recycled materials in road construction: method for decision-making in Norway, Resour. Conserv. Recycl., 42(2004), p. 249.

    Article  Google Scholar 

  2. M.B. Parsons, D.K. Bird, M.T. Einaudi, and C.N. Alpers, Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California, Appl. Geochem., 16(2001), p. 1567.

    Article  CAS  Google Scholar 

  3. P. Shanmuganathan, P. Lakshmipathiraj, S. Srikanth, A.L. Nachiappan, and A. Sumathy, Toxicity characterization and long-term stability studies on copper slag from the ISASMELT process, Resour. Conserv. Recycl., 52(2008), p. 601.

    Article  Google Scholar 

  4. M. Tossavainen and E. Forssberg, The potential leachability from natural road construction materials, Sci. Total Environ., 239(1999), p. 31.

    Article  CAS  Google Scholar 

  5. L. Roth and M. Eklund, Environmental evaluation of reuse of by-products as road construction materials in Sweden, Waste Manage., 23(2003), p. 107.

    Article  CAS  Google Scholar 

  6. M. Tossavainen, F. Engströ, N. Menad, and Q. Yang, Stability of modified steel slags, [in] European Slag Conference in Oulu, Oulu, 2005.

    Google Scholar 

  7. J. Puziewicz, K. Zainoun, and H. Bril, Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland, Can. Mineral., 45(2007), p. 1189.

    Article  CAS  Google Scholar 

  8. V. Ettler, O. Legendre, F. Bodénan, and J.C. Touray, Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Pribram, Czech Republic, Can. Mineral., 39(2001), p. 873.

    Article  CAS  Google Scholar 

  9. N.M. Piatak and R.R. Seal II, Mineralogy and the release of trace elements from slag from the Hegeler zinc smelter, Illinois (USA), Appl. Geochem., 25(2010), p. 302.

    Article  CAS  Google Scholar 

  10. J. Kierczak, C. Néel, J. Puziewicz, and H. Bril, The mineralogy and weathering of slag produced by the smelting of lateritic Ni ores, Szklary, Southwestern Poland, Can. Mineral., 47(2009), p. 557.

    Article  CAS  Google Scholar 

  11. A. Manasse and M. Mellini, Chemical and textural characterization of medieval slags from the Massa Marittima smelting sites (Tuscany, Italy), J. Cult. Heritage, 3(2002), p. 187.

    Article  Google Scholar 

  12. T. Deng and Y.H. Ling, Chemical and mineralogical characterizations of a copper converter slag, Rare Met., 21(2002), p. 175.

    CAS  Google Scholar 

  13. A. Navarro, E. Cardellach, J.L. Mendoza, M. Corbella, and L.M. Domènech, Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almer’la, Spain), Appl. Geochem., 23(2008), p. 895.

    Article  CAS  Google Scholar 

  14. H. Kucha, A. Martens, R. Ottenburgs, W.D. Vos, and W. Viaene, Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium, Environ. Geol., 27(1996), p. 1.

    Article  CAS  Google Scholar 

  15. V. Ettler, Z. Johan, B. Kř’lbek, O. Šebek, and M. Mihaljevič, Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia, Appl. Geochem., 24(2009), p. 1.

    Article  CAS  Google Scholar 

  16. P.K. Gbor, V. Mokri, and C.Q. Jia, Characterization of smelter slags, J. Environ. Sci. Heal. A, 35(2000), p. 147.

    Article  Google Scholar 

  17. M. Borell, Slag: a resource in the sustainable society, [in] Proceedings of Securing the future: International Conference on Mining and the Environmental, Metals and Energy Recovery, Skellefte 2005, p. 1.

  18. F.X. He, A Novel Method for Metal Recovery from Zinc Fuming Slags [Dissertation], The University of British Columbia, Vancouver, 2000, p. 9

    Google Scholar 

  19. C.W. Bale, E. Béisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage thermodynamical software and databases-recent developments, CALPHAD, 33(2009), p. 295.

    Article  CAS  Google Scholar 

  20. BS EN, Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges: Part 2. One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction), European Committee for Standardization Brussels, 2002.

    Google Scholar 

  21. M. Kün, M. Behmenburg, M. Capodilupo, and M.Q. Romera, Decreasing the Scorification of Chrome, European Commission, Luxembourg, 2000, p. 1018.

    Google Scholar 

  22. F. Tüen and N.T. Bailey, Recovery of metal values from copper smelter slags by roasting with pyrite, Hydrometallurgy, 25(1990), p. 317.

    Article  Google Scholar 

  23. E.H. Nickel, The definition of a mineral, Can. Mineral., 33(1995), p. 689.

    CAS  Google Scholar 

  24. H.A. van der Sloot, D. Hoede, D.J.F. Cresswell, and J.R. Barton, Leaching behaviour of synthetic aggregates, Waste Manage, 21(2001), p. 221.

    Article  Google Scholar 

  25. B. Beverskog and I. Puigdomench, Revised pourbaix diagrams for zinc at 25-300°C, Corros. Sci., 39(1997), p. 107.

    Article  CAS  Google Scholar 

  26. N.M. Piatak, R.R. Seal II, and J.M. Hammarstrom, Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and preciousmetal smelting at abandoned mine sites, Appl. Geochem., 19(2004), p. 1039.

    Article  CAS  Google Scholar 

  27. A.F. Wells, Structural Inorganic Chemistry, 5th Ed., Oxford University Press, Oxford, 1984.

    Google Scholar 

  28. K.C. Mills, The influence of structure on the physicochemical properties of slags, ISIJ Int., 33(1993), p. 148.

    Article  CAS  Google Scholar 

  29. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli, Break temperatures of mould fluxes and their relevance to continuous casting, Ironmaking Steelmaking, 27(2000), p. 238.

    Article  CAS  Google Scholar 

  30. S. Mostaghel, C. Samuelsson, and B. Björkman, Influence of alumina on iron-silicate slag properties, [in] European Metallurgical Conference (EMC 2011), Dusseldorf, 2011, p. 291.

    Google Scholar 

  31. E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramics, The American Ceramic Society, Columbus, 1964.

    Google Scholar 

  32. E. Jak, B. Zhao, and P. Hayes, Phase equilibria in the system FeO-Fe2O3-Al2O3-CaO-SiO2 with applications to non-ferrous smelting slags, Trans. Inst. Min. Metall. C, 117(2008), p. 147.

    CAS  Google Scholar 

  33. S.W. Zhang, H.R. Rezaie, H. Sarpoolaky, and W.E. Lee, Alumina dissolution into silicate slag, J.Am. Ceram. Soc., 83(2000), p. 897.

    Article  CAS  Google Scholar 

  34. A. Stefánsson, Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0°C to 350°C, Chem. Geol., 172(2001), p. 225.

    Article  Google Scholar 

  35. S.R. Gislason and S. Arnórsson, Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics, Chem. Geol., 105(1993), p. 117.

    Article  CAS  Google Scholar 

  36. S.N. Ojha, Metastable phase formation during solidification of undercooled melt, Mater. Sci. Eng. A, 304–306(2001), p. 114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Mostaghel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostaghel, S., Samuelsson, C. & Björkman, B. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags. Int J Miner Metall Mater 20, 234–245 (2013). https://doi.org/10.1007/s12613-013-0718-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0718-3

Keywords

Navigation