Skip to main content

Advertisement

Log in

Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Austin, Shreve’s Chemical Process Industries, 5th Ed., McGraw-Hill, Singapore, 1985, p.658.

    Google Scholar 

  2. D.A. Pereira, Barroso de Aguiar, F. Castro, M.F. Almeida, and J.A. Labrincha, Mechanical behavior of Portland cement mortars with incorporation of Al-containing salt slags, Cem. Concr. Res., 30(2000), p.1131.

    Article  CAS  Google Scholar 

  3. M.J. Ribeiro, D.U. Tulyaganov, J.M. Ferreira, and J.A. Labrinacha, Recycling of Al-rich industrial sludge in refractory ceramic pressed bodies, Ceram. Int., 28(2002), No.3, p.319.

    Article  CAS  Google Scholar 

  4. M.J. Ribeiro, D.U. Tulyaganov, J.M. Ferreira, and J.A. Labrinacha, High temperature mullite dissolution in ceramic bodes derived from Al-rich sludge, J. Eur. Ceram. Soc., 25(2005), No.5, p.703.

    Article  CAS  Google Scholar 

  5. J. Davidovit, Geopolymer: Inorganic polymeric new materials, J. Therm. Anal., 37(1991), No. 8, p.1633.

    Article  Google Scholar 

  6. J.G.S. Van Jaarsveld and J.S.J. Van Deventer, Effect of the alkali metal activator on the properties of fly ash-based geopolymers, Ind. Eng. Chem. Res., 88(1999), No.10, p.3932.

    Article  Google Scholar 

  7. P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Manage., 29(2009), No.2, p.539.

    Article  CAS  Google Scholar 

  8. U. Rattanasak and P. Chindaprasirt, Influence of NaOH solution on the synthesis of fly ash geopolymer, Miner. Eng., 22(2009), No.12, p.1073.

    Article  CAS  Google Scholar 

  9. S. Detphan and P. Chindaprasirt, Preparation of fly ash and rice husk ash geopolymer, Int. J. Miner. Metall. Mater., 16(2009), No.6, p.720.

    CAS  Google Scholar 

  10. U. Rattanasak, K. Pankhet, and P. Chindaprasirt, Effect of chemical admixtures on properties of high-calcium fly ash geopolymer, Int. J. Miner. Metall. Mater., 18(2011), No.3, p.364.

    Article  CAS  Google Scholar 

  11. S. Songpiriyakij, T. Kubprasit, C. Jaturapitakkul, and P. Chindaprasirt, Compressive strength and degree of reaction of biomass- and fly ash-based geopolymer, Constr. Build. Mater., 24(2010), No.3, p.236.

    Article  Google Scholar 

  12. J. Kano, S. Saeki, F. Saito, M. Tanjo, and S. Yamazaki, Application of dry grinding to reduction in transformation temperature of aluminum hydroxides, Int. J. Miner. Process., 60(2000), No.2, p.91.

    Article  CAS  Google Scholar 

  13. T. Shiono, S. Okumura, H. Shiomi, T. Nishida, M. Kitamura, and M. Kamitani, Preparation of inorganic consolidated body using aluminium hydroxide mechanically activated by dry milling, J. Mater. Synth. Process., 8(2000), No.5–6, p.351.

    Article  CAS  Google Scholar 

  14. A.R. Farinha, J.B. Ribeiro, R. Mendes, and M.T. Vieira, Shock activation of α-alumina from calcinated Al-rich sludge, Ceram. Int., 35(2009), No.5, p.1897.

    Article  CAS  Google Scholar 

  15. B.Q. Zhu, B.X. Fang, and X.C. Li, Dehydration reactions ad kinetic parameters of gibbsite, Ceram. Int., 36(2010), No.8, p.2493.

    Article  CAS  Google Scholar 

  16. V.P. Della, I. Kühn, and D. Hotza, Rice husk ash as an alternate source for active silica production, Mater. Lett., 57(2002), No.4, p.818.

    Article  CAS  Google Scholar 

  17. A. Tonejc, M. Stubiċar, A. Tonejc, C. Kosanović, B. Subotić, and I. Šmit, Transformation of γ-AlOOH (boehmite), and Al(OH)3 (gibbsite) to α-Al2O3 (corundum) induced by high energy ball milling, J. Mater. Sci. Lett., 13(1994), No.7, p.519.

    Article  CAS  Google Scholar 

  18. E. Wolska and W. Szajda, Use of infrared spectroscopy to identify crystalline aluminum hydroxides of the Al(OH)3-Fe(OH)3 system, J. Appl. Spectrosc., 38(1983), No.1, p.137.

    Article  Google Scholar 

  19. M. Mora, D. Gutiérrez-Campos, C. Lavelle, and R.M. Rodríguez, Evaluation of Bayer process gibbsite reactivity in magnesium aluminate spinel formation, Mater. Sci. Eng. A, 454–455(2007), No.1, p.139.

    Google Scholar 

  20. X. Gong, Z. Nie, M. Qian, J. Liu, L.A. Pederson, D.T. Hobbs, and N.G. McDuffie, Gibbsite to Boehmite Transformation in Strongly Caustic and Nitrate Environments, Report No. WSRC-MS-2002-00850 submitted to the U.S. Department of Energy, 2002.

  21. U. Rattanasak, P. Chindaprasirt, and P. Suwanvitaya, Development of high volume rice husk ash alumino silicate composites, Int. J. Miner. Metall. Mater., 17(2010), No.5, p.654.

    Article  CAS  Google Scholar 

  22. G. Kovalchuk, A. Fernández-Jiménez, and A. Palomo, Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development: Part II. Fuel, 86(2007), No.3, p.315.

    Article  CAS  Google Scholar 

  23. A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous Mesoporous Mater., 91(2006), No.1–3, p.111.

    Article  Google Scholar 

  24. X.L. Guo, H.S. Shi, and A.D. Warren, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos., 32(2010), No. 2, p.142.

    Article  CAS  Google Scholar 

  25. K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, and P. Chindaprasirt, NaOH-activated ground fly ash geopolymer cured at ambient temperature, Fuel, 90(2011), No.6, p.2118.

    Article  CAS  Google Scholar 

  26. P. De Silva, K. Sagoe-Crenstil, and V. Sirivivatnanon, Kinetics of geopolymerization: Role of Al2O3 and SiO2, Cem. Concr. Res., 37(2007), No.4, p.512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ubolluk Rattanasak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chindaprasirt, P., Rattanasak, U., Vongvoradit, P. et al. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials. Int J Miner Metall Mater 19, 872–878 (2012). https://doi.org/10.1007/s12613-012-0641-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0641-z

Keywords

Navigation