Skip to main content
Log in

Preparation and characterization of in-site regenerated TiO2-ACFs photocatalyst

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In-site regenerated titanium dioxide-activated carbon fibers (TiO2-ACFs) photocatalyst was prepared by the sol-gel method. Detailed surface and structural characterization of the TiO2-ACFs photocatalyst was carried out. The photoactivity of TiO2-ACFs under ultraviolet irradiation was compared with original ACFs and pure TiO2 by the degradation of methylene blue aqueous solution. The degradation efficiency by the TiO2 (5wt%)-ACFs sample is much higher than that by TiO2 and ACFs. The results show that the photocatalysis by TiO2-ACFs is a six-step process. The adsorption-transfer-photocatalysis rate of TiO2-ACFs is higher than the adsorption-photocatalysis rate of TiO2, so the photocatalysis rate of the TiO2-ACFs system is higher than that of TiO2 photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Matatov-Meytal and M. Sheintuch, Hydrotreating processes for catalytic abatement of water pollutants, Catal. Today, 75(2002), No.1–4, p.63.

    Article  Google Scholar 

  2. Y.M. Chen, J. Zhong, F. Chen, et al., Low-temperature preparation and photocatalytic performance of F-doped nanosized TiO2 thin film, Chin. J. Catal., 31(2010), No.1, p.120.

    Google Scholar 

  3. L.A. Lawton, P.K.J. Robertson, B.J.P.A. Cornish, et al., Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts, J. Catal., 213(2003), No.1, p.109.

    Article  Google Scholar 

  4. J.A. Ibáñez, M.I. Litter, and R.A. Pizarro, Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram (−) bacteria, J. Photochem. Photobiol. A, 157(2003), No.1, p.81.

    Article  Google Scholar 

  5. R. Yang, J.H. Liu, S.M. Li, et al., Measurement and evaluation of environmental factors in underground construction site, Space Med. Med. Eng., 18(2005), No.4, p.235.

    Google Scholar 

  6. M.L. Zhang, T.C. An, J.M. Fu, et al., Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor, Chemosphere, 64(2006), No.3, p.423.

    Article  Google Scholar 

  7. A.H. El-Sheikh, A.P. Newman, H. Al-Daffaee, et al., Deposition of anatase on the surface of activated carbon, Surf. Coat. Technol., 187(2004), No.2–3, p.284.

    Article  Google Scholar 

  8. B. Tryba, A.W. Morawski, and M. Inagaki, A new route for preparation of TiO2-mounted activated carbon, Appl. Catal. B, 46(2003), No.1, p. 203.

    Article  Google Scholar 

  9. C.H. Ao and S.C. Lee, Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level, J. Photochem. Photobiol. A, 161(2004), No.2–3, p.131.

    Article  Google Scholar 

  10. J.J. Yu and S.Y. Chou, Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption, Chemosphere, 41(2000), No.3, p.371.

    Article  Google Scholar 

  11. J.H. Liu, R. Yang, and S.M. Li, Preparation and characterization of high photoactive TiO2 catalyst using the UV irradiation induced sol-gel method, J. Univ. Sci. Technol. Beijing, 13(2006), No.4, p.350.

    Article  Google Scholar 

  12. G. Colón, M.C. Hidalgo, M. Macías, et al., Enhancement of TiO2/C photocatalytic activity by sulfate promotion, Appl. Catal. A, 259(2004), No.2, p.235.

    Article  Google Scholar 

  13. D. Dvoranová, V. Brezová, M. Mazúr, et al., Investigations of metal-doped titanium dioxide photocatalysts, Appl. Catal. B, 37(2002), No.2, p.91.

    Article  Google Scholar 

  14. T. Ivanova, A. Harizanova, and M. Surtchev, Formation and investigation of sol-gel TiO2-V2O5 system, Mater. Lett., 55(2002), No.5, p.327.

    Article  Google Scholar 

  15. J. Matos, J. Laine, and J.M. Herrmann, Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Appl. Catal. B, 18(1998), No.3–4, p.281.

    Article  Google Scholar 

  16. J. Matos, J. Laine, and J.M. Herrmann, Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania, J. Catal., 200(2001), No.1, p.10.

    Article  Google Scholar 

  17. J.H. Liu, R. Yang, and S.M. Li, Preparation and application of efficient TiO2/ACFs photocatalyst, J. Environ. Sci., 18(2006), No.5, p.979.

    Article  Google Scholar 

  18. N. Takeda, N. Iwata, T. Torimoto, et al., Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide, J. Catal., 177(1998), No.2, p.240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Liu, Jh. & Li, Sm. Preparation and characterization of in-site regenerated TiO2-ACFs photocatalyst. Int J Miner Metall Mater 18, 357–363 (2011). https://doi.org/10.1007/s12613-011-0447-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-011-0447-4

Keywords

Navigation