Skip to main content

Advertisement

Log in

In Vitro-In Vivo Correlation for the Antibacterial Effect of Lactiplantibacillus plantarum as a Topical Healer for Infected Burn Wound

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Difficulties in delivering antimicrobial agents to wound areas and emersion of multiple drug resistant organisms (MDROs) have converted managing burn infections into a complicated task in medicine. Probiotics emerged not only as a probable solution for burn infections but also as an accelerator in the healing process. The probability of in vitro-in vivo correlation (IVIVC) in probiotic activity leads to lower costs in finding new therapeutic options. Simulated wound fluid (SWF) was used to evaluate the antibacterial function of Lactiplantibacillus plantarum in wounds. The growth parameters in SWF were evaluated using a logistic model to predict growth behavior in the wound area. In addition, probiotic antimicrobial activity and secretion of antibacterial substances in SWF were also studied. Data were used to select the initial dose and apply frequency for in vivo study. The wound models were infected by two main pathogens (Pseudomonas aeruginosa or Staphylococcus aureus). In vitro results showed less lag time associated with considerable acid production in SWF. In the following, secretion of antimicrobial substances and co-aggregation with pathogens became more important. The susceptibility of pathogens to these factors was different, and culture medium affected the yield of each factor involved in eliminating pathogens. Histological analysis and macroscopic examination of wounds revealed probiotics as effective as positive control or more. There were some differences in the antibacterial functions of probiotics in simulated and real wound environments. The in vitro effect of probiotics on removal of pathogens was not the same as the trend seen in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434. https://doi.org/10.1128/CMR.19.2.403-434.2006

    Article  PubMed  PubMed Central  Google Scholar 

  2. Erol S, Altoparlak U, Akcay MN, Celebi F, Parlak M (2004) Changes of microbial flora and wound colonization in burned patients. Burns 30(4):357–361. https://doi.org/10.1016/j.burns.2003.12.013

    Article  PubMed  Google Scholar 

  3. Altoparlak U, Erol S, Akcay MN, Celebi F, Kadanali A (2004) The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients. Burns 30(7):660–664. https://doi.org/10.1016/j.burns.2004.03.005

    Article  PubMed  Google Scholar 

  4. Weber J, McManus A (2004) Infection control in burn patients. Burns 30(8):A16-24. https://doi.org/10.1016/j.burns.2004.08.003

    Article  PubMed  Google Scholar 

  5. Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN (2009) merging infections in burns. Surg Infect 10(5):389–397. https://doi.org/10.1089/sur.2009.024

    Article  Google Scholar 

  6. Pećanac M, Janjić Z, Komarčević A, Pajić M, Dobanovački D, Mišković-Skeledžija S (2013) Burns treatment in ancient times. Med Pregl 66(5–6):263–267. https://pubmed.ncbi.nlm.nih.gov/23888738/

  7. Mohr JF, Ostrosky-Zeichner L, Wainright DJ, Parks DH, Hollenbeck TC, Ericsson CD (2008) Pharmacokinetic evaluation of single-dose intravenous daptomycin in patients with thermal burn injury. Antimicrob Agents Chemother 52(5):1891–1893. https://doi.org/10.1128/AAC.01321-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27(3):202–209. https://doi.org/10.4103/0255-0857.53201

    Article  CAS  PubMed  Google Scholar 

  9. Muizzuddin N, Maher W, Sullivan M, Schnittger S, Mammone T (2012) Physiological effect of a probiotic on skin. J Cosmet Sci 63(6):385–395. https://pubmed.ncbi.nlm.nih.gov/23286870/

  10. Al-Ghazzewi FH, Tester RF (2014) Impact of prebiotics and probiotics on skin health. Benef Microbes 5(2):99–107. https://doi.org/10.3920/BM2013.0040

    Article  CAS  PubMed  Google Scholar 

  11. Lam EK, Yu L, Wong HP, Wu WK, Shin VY, Tai EK, So WH, Woo PC, Cho CH (2007) Probiotic Lactobacillus rhamnous GG enhances gastric ulcer healing in rats. Eur J Pharmacol 565(1–3):171–179. https://doi.org/10.1016/j.ejphar.2007.02.050

    Article  CAS  PubMed  Google Scholar 

  12. Nole KL, Yim E, Keri JE (2014) Probiotics and prebiotics in dermatology JAAD 71(4):814–821. https://doi.org/10.1016/j.jaad.2014.04.050

    Article  Google Scholar 

  13. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745. https://doi.org/10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  14. Dai C, Zhao DH, Jiang M (2012) VSL# 3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int J Mol Med 29(2):202–208. https://doi.org/10.3892/ijmm.2011.839

    Article  CAS  PubMed  Google Scholar 

  15. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776. https://doi.org/10.3945/jn.110.135657

    Article  CAS  PubMed  Google Scholar 

  16. Antikainen J, Anton L, Sillanpää J, Korhonen TK (2002) Domains in the S-layer protein CbsA of Lactobacillus crispatus involved in adherence to collagens, laminin and lipoteichoic acids and in self-assembly. Mol Microbiol 46(2):381–394. https://doi.org/10.1046/j.1365-2958.2002.03180.x

    Article  CAS  PubMed  Google Scholar 

  17. Valdez JC, Peral MC, Rachid M, Santana M, Perdigon G (2005) Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect 11(6):472–479. https://doi.org/10.1111/j.1469-0691.2005.01142.x

    Article  CAS  PubMed  Google Scholar 

  18. Prabhurajeshwar C, Chandrakanth K (2019) Evaluation of antimicrobial properties and their substances against pathogenic bacteria in vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clin Nutr Exp 1(23):97–115. https://doi.org/10.1016/j.yclnex.2018.10.001

    Article  Google Scholar 

  19. Benyacoub J, Bosco N, Blanchard C, Demont A, Philippe D, Castiel-Higounenc I, Guéniche A (2013) Immune modulation property of Lactobacillus paracasei NCC2461 (ST11) strain and impact on skin defenses. Benef Microbes 5(2):129–136. https://doi.org/10.3920/bm2013.0014

    Article  Google Scholar 

  20. Perez-Cano FJ, Dong H, Yaqoob P (2010) In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 215(12):996–1004. https://doi.org/10.1016/j.imbio.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  21. Linsalata M, Russo F, Berloco P, Valentini AM, Caruso ML, De Simone C, Barone M, Polimeno L, Di Leo A (2005) Effects of probiotic bacteria (VSL# 3) on the polyamine biosynthesis and cell proliferation of normal colonic mucosa of rats. in vivo 19(6):989–995. https://pubmed.ncbi.nlm.nih.gov/16277012/

  22. Mohammedsaeed W, Cruickshank S, McBain AJ, O’Neill CA (2015) Lactobacillus rhamnosus GG lysate increases re-epithelialization of keratinocyte scratch assays by promoting migration. Sci Rep 5(1):1–11. https://doi.org/10.1038/srep16147

    Article  CAS  Google Scholar 

  23. Jeon B, Kim HR, Kim H, Chung DK (2016) In vitro and in vivo downregulation of C3 by lipoteichoic acid isolated from Lactobacillus plantarum K8 suppressed cytokine-mediated complement system activation. FEMS Microbiol Lett 364(14). https://doi.org/10.1093/femsle/fnw140

  24. Schillinger U, Lücke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55(8):1901–1906. https://doi.org/10.1128/aem.55.8.1901-1906.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdollahi S, Ghahremani MH, Setayesh N, Samadi N (2018) Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis. Microb pathog 1(123):28–35. https://doi.org/10.1016/j.micpath.2018.06.024

    Article  CAS  Google Scholar 

  26. Tagg J, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21(5):943. https://doi.org/10.1128/am.21.5.943-943.1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bromberg R, Moreno I, Zaganini CL, Delboni RR, Oliveira JD (2004) Isolation of bacteriocin-producing lactic acid bacteria from meat and meat products and its spectrum of inhibitory activity. Braz J Microbiol 35(1–2):137–144. https://doi.org/10.1590/S1517-83822004000100023

    Article  CAS  Google Scholar 

  28. Wayne PA (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7. Clin Lab Stand Insti

  29. Said J, Dodoo CC, Walker M, Parsons D, Stapleton P, Beezer AE, Gaisford S (2014) An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid. Int J Pharm 462(1–2):123–128. https://doi.org/10.1016/j.ijpharm.2013.12.037

    Article  CAS  PubMed  Google Scholar 

  30. Muloiwa M, Nyende-Byakika S, Dinka M (2020) Comparison of unstructured kinetic bacterial growth models. S Afr J Chem Eng 1(33):141–150. https://doi.org/10.1016/j.sajce.2020.07.006

    Article  Google Scholar 

  31. Rezvani F, Ardestani F, Najafpour G (2017) Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture. Braz J Microbiol 48:251–258. https://doi.org/10.1016/2Fj.bjm.2016.12.007

  32. Pla ML, Oltra S, Esteban MD, Andreu S, Palop A (2015) Comparison of primary models to predict microbial growth by the plate count and absorbance methods. Biomed Res Int. https://doi.org/10.1155/2015/365025

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dowarah R, Verma AK, Agarwal N, Singh P, Singh BR (2018) Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS One 13(3):e0192978. https://doi.org/10.1371/journal.pone.0192978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu CH, Ren LQ, Zhou Y, Ye BC (2019) Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food sci nutr 7(6):1997–2005. https://doi.org/10.1002/fsn3.1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo HF, Ali RM, Hamid RA, Zaini AA, Khaza’ai H (2017) A new model for studying deep partial-thickness burns in rats. IJBT 7(6):107. https://www.ncbi.nlm.nih.gov/pubmed/29119063

  36. Siavash M, Shokri S, Haghighi S, Shahtalebi MA, Farajzadehgan Z (2015) The efficacy of topical royal jelly on healing of diabetic foot ulcers: a double-blind placebo-controlled clinical trial. IWJ 12(2):137–142. https://doi.org/10.1111/iwj.12063

    Article  Google Scholar 

  37. Ukong S, Ampawong S, Kengkoom K (2008) Collagen measurement and staining pattern of wound healing comparison with fixations and stains. MST 22:37–41

    Google Scholar 

  38. Awaisheh SS, Ibrahim SA (2009) Screening of antibacterial activity of lactic acid bacteria against different pathogens found in vacuum-packaged meat products. Foodborne Pathog Dis 6(9):1125–1132. https://doi.org/10.1089/fpd.2009.0272

    Article  CAS  PubMed  Google Scholar 

  39. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174. https://doi.org/10.1159/000342079

    Article  CAS  PubMed  Google Scholar 

  40. Jones SE, Versalovic J (2009) Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC microbiol 9(1):1–9. https://doi.org/10.1186/1471-2180-9-35

    Article  CAS  Google Scholar 

  41. Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73(2):444s–450s. https://doi.org/10.1093/ajcn/73.2.444s

    Article  CAS  PubMed  Google Scholar 

  42. Ostad SN, Salarian AA, Ghahramani MH, Fazeli MR, Samadi N, Jamalifar H (2009) Live and heat-inactivated lactobacilli from feces inhibit Salmonella typhi and Escherichia coli adherence to Caco-2 cells. Folia Microbiol 54(2):157–160. https://doi.org/10.1007/s12223-009-0024-7

    Article  CAS  Google Scholar 

  43. Argenta A, Satish L, Gallo P, Liu F, Kathju S (2016) Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PLoS One 11(10):e0165294. https://doi.org/10.1371/journal.pone.0165294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peral MC, Huaman Martinez MA, Valdez JC (2009) Bacteriotherapy with Lactobacillus plantarum in burns. IWJ 6(1):73–81. https://doi.org/10.1111/2Fj.1742-481X.2008.00577.x

  45. Todorov SD, Franco BD (2010) Lactobacillus plantarum: characterization of the species and application in food production. Food Rev Int 26(3):205–229. https://doi.org/10.1080/87559129.2010.484113

    Article  CAS  Google Scholar 

  46. Serra R, Grande R, Butrico L, Rossi A, Settimio UF, Caroleo B, Amato B, Gallelli L, de Franciscis S (2015) Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 13(5):605–613. https://doi.org/10.1586/14787210.2015.1023291

    Article  CAS  PubMed  Google Scholar 

  47. Prabhurajeshwar C, Chandrakanth RK (2017) Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: an in vitro validation for the production of inhibitory substances. Biomed J 40(5):270–283. https://doi.org/10.1016/j.bj.2017.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nagoba BS, Selkar SP, Wadher BJ, Gandhi RC (2013) Acetic acid treatment of pseudomonal wound infections–a review. J Infect Public Health 6(6):410–415. https://doi.org/10.1016/j.jiph.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  49. Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I (2017) Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 25(6):912–922. https://doi.org/10.1111/wrr.12607

    Article  PubMed  Google Scholar 

  50. DiPietro LA (2016) Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 100(5):979–984. https://doi.org/10.1189/2Fjlb.4MR0316-102R

  51. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends in cell biol 15(11):599–607. https://doi.org/10.1016/j.tcb.2005.09.002

    Article  CAS  Google Scholar 

  52. Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE (2018) Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonization and pathogenicity in a mixed biofilm. Pathog Dis 76(1):fty003. https://doi.org/10.1093/femspd/fty003

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Tehran University of Medical Sciences.

Funding

This study was financially supported by a grant from Tehran University of Medical Sciences (grant no. 9511332005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Vatanara or Nasrin Samadi.

Ethics declarations

Ethics Approval

All procedures were approved by Tehran University of Medical Sciences, Animal Ethics Committee (no. IR. TUMS.VCR.REC.1398.099).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraffah, F., Kiani, M., Abdollahi, M. et al. In Vitro-In Vivo Correlation for the Antibacterial Effect of Lactiplantibacillus plantarum as a Topical Healer for Infected Burn Wound. Probiotics & Antimicro. Prot. 14, 675–689 (2022). https://doi.org/10.1007/s12602-022-09934-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09934-4

Keywords

Navigation