Skip to main content

Advertisement

Log in

Weissella: An Emerging Bacterium with Promising Health Benefits

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Weissella strains have been the subject of much research over the last 5 years because of the genus’ technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins MD, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603. https://doi.org/10.1111/j.1365-2672.1993.tb01600.x

    Article  CAS  PubMed  Google Scholar 

  2. Fusco V, Quero GM, Cho GS et al (2015) The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol 6:22. https://doi.org/10.3389/fmicb.2015.00155

    Article  Google Scholar 

  3. Huys G, Leisner J, Björkroth J (2012) The lesser LAB gods: Pediococcus, Leuconostoc, Weissella, Carnobacterium, and affiliated genera. In: Lahtinen S, Ouwehand AC, Salminen S, Von WA (eds) Lactic Acid Bacteria, Microbiological and Funcional Aspects, fouth. Taylor & Francis Group, New York, pp 94–112

    Google Scholar 

  4. Niven CF, Evans JB (1957) Lactobacillus viridescens nov. spec., a heterofermentative species that produces a green discoloration of cured meat pigments. J Bacteriol 73:758–759

    Article  Google Scholar 

  5. Garvie EI (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48:439–447. https://doi.org/10.1099/00221287-48-3-439

    Article  CAS  PubMed  Google Scholar 

  6. Holzapfel WH, Van WEP (1982) Lactobacillus kandleri sp. nov., a new species of the subgenus Betabacterium, with glycine in the peptidoglycan. Zentralblatt für Bakteriol Mikrobiol und Hyg I Abt Orig C Allg Angew und ökologische Mikrobiol 3:495–502. https://doi.org/10.1016/S0721-9571(82)80007-0

    Article  CAS  Google Scholar 

  7. Kandler O, Schillinger U, Weiss N (1983) Lactobacillus halotolerans sp. nov., nom. rev. and Lactobacillus minor sp. nov., nom. rev. Syst Appl Microbiol 4:280–285. https://doi.org/10.1016/S0723-2020(83)80056-3

    Article  CAS  PubMed  Google Scholar 

  8. Tanasupawat S, Shida O, Okada S (2016) Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. 023838:1479–1485

  9. Magnusson J, Jonsson H, Schnurer J, Roos S (2002) Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 52:831–834. https://doi.org/10.1099/ijs.0.02015-0

    Article  CAS  PubMed  Google Scholar 

  10. Björkroth KJ, Schillinger U, Geisen R et al (2002) Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 52:141–148. https://doi.org/10.1099/00207713-52-1-141

    Article  PubMed  Google Scholar 

  11. Lee J-S, Lee KC, Ahn J-S et al (2002) Weissella koreensis sp. nov., isolated from kimchi. Int J Syst Evol Microbiol 52:1257–1261

    CAS  PubMed  Google Scholar 

  12. De Bruyne K, Camu N, Lefebvre K et al (2008) Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 58:2721–2725. https://doi.org/10.1099/ijs.0.65853-0

    Article  CAS  PubMed  Google Scholar 

  13. Padonou SW, Schillinger U, Nielsen DS et al (2010) Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. Int J Syst Evol Microbiol 60:2193–2198. https://doi.org/10.1099/ijs.0.014332-0

    Article  CAS  PubMed  Google Scholar 

  14. De Bruyne K, Camu N, De Vuyst L, Vandamme P (2010) Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 60:1999–2005. https://doi.org/10.1099/ijs.0.019323-0

    Article  CAS  PubMed  Google Scholar 

  15. Vela AI, Fernández A, de Quirós YB et al (2011) Weissella ceti sp. nov., isolated from beaked whales (Mesoplodon bidens). Int J Syst Evol Microbiol 61:2758–2762. https://doi.org/10.1099/ijs.0.028522-0

    Article  CAS  PubMed  Google Scholar 

  16. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P (2013) Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 63:1709–1716. https://doi.org/10.1099/ijs.0.040311-0

    Article  CAS  PubMed  Google Scholar 

  17. Tohno M, Kitahara M, Inoue H et al (2013) Weissella oryzae sp. nov., isolated from fermented rice grains. Int J Syst Evol Microbiol 63:1417–1420. https://doi.org/10.1099/ijs.0.043612-0

    Article  PubMed  Google Scholar 

  18. Oh SJ, Shin N-R, Hyun D-W et al (2013) Weissella diestrammenae sp. nov., isolated from the gut of a camel cricket (Diestrammena coreana). Int J Syst Evol Microbiol 63:2951–2956. https://doi.org/10.1099/ijs.0.047548-0

    Article  CAS  PubMed  Google Scholar 

  19. Nisiotou A, Dourou D, Filippousi M-E et al (2014) Weissella uvarum sp. nov., isolated from wine grapes. Int J Syst Evol Microbiol 64:3885–3890. https://doi.org/10.1099/ijs.0.066209-0

    Article  CAS  PubMed  Google Scholar 

  20. Heo J, Hamada M, Cho H et al (2019) Weissella cryptocerci sp. nov., isolated from gut of the insect Cryptocercus kyebangensis. Int J Syst Evol Microbiol 69:2801–2806. https://doi.org/10.1099/ijsem.0.003564

    Article  CAS  PubMed  Google Scholar 

  21. Praet J, Meeus I, Cnockaert M et al (2015) Novel lactic acid bacteria isolated from the bumble bee gut : Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie van Leeuwenhoek, J Microbiol 107:1337–1349. https://doi.org/10.1007/s10482-015-0429-z

    Article  CAS  Google Scholar 

  22. Lee S, Ku H, Ahn M et al (2015) Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 65:4674–4681. https://doi.org/10.1099/ijsem.0.000631

    Article  CAS  PubMed  Google Scholar 

  23. Choi H, Cheigh C, Kim S et al (2002) Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int J Syst Evol Microbiol 52:507–511

    Article  CAS  Google Scholar 

  24. Lin S-T, Wang L-T, Wu Y-C et al (2020) Weissella muntiaci sp. nov., isolated from faeces of Formosan barking deer (Muntiacus reevesi). Int J Syst Evol Microbiol 70:1578–1584

    Article  CAS  Google Scholar 

  25. Li YQ, Tian WL, Gu CT (2020) Weissella sagaensis sp. nov., isolated from traditional Chinese yogurt. Int J Syst Evol Microbiol 70:2485–2492

    Article  CAS  Google Scholar 

  26. Adesulu-Dahunsi AT, Sanni AI, Jeyaram K (2018) Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT - Food Sci Technol 87:432–442. https://doi.org/10.1016/j.lwt.2017.09.013

    Article  CAS  Google Scholar 

  27. Dey DK, Koo BG, Sharma C, Kang SC (2019) Characterization of Weissella confusa DD_A7 isolated from kimchi. LWT - Food Sci Technol 111:663–672. https://doi.org/10.1016/j.lwt.2019.05.089

    Article  CAS  Google Scholar 

  28. Benhouna IS, Heumann A, Rieu A et al (2019) Exopolysaccharide produced by Weissella confusa: chemical characterisation, rheology and bioactivity. Int Dairy J 90:88–94. https://doi.org/10.1016/j.idairyj.2018.11.006

    Article  CAS  Google Scholar 

  29. Dey DK, Khan I, Kang SC (2019) Anti-bacterial susceptibility profiling of Weissella confusa DD _ A7 against the multidrug-resistant ESBL-positive E. coli. Microb Pthogenes 128:119–130. https://doi.org/10.1016/j.micpath.2018.12.048

    Article  CAS  Google Scholar 

  30. Anandharaj M, Sivasankari B, Santhanakaruppu R et al (2015) Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Res Microbiol 166:428–439. https://doi.org/10.1016/j.resmic.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  31. Yu H-S, Lee N-K, Choi A-J et al (2019) Antagonistic and antioxidant effect of probiotic Weissella cibaria JW15. Food Sci Biotechnol 28:851–855. https://doi.org/10.1007/s10068-018-0519-6

    Article  CAS  PubMed  Google Scholar 

  32. Xia Y, Qin S, Shen Y (2019) Probiotic potential of Weissella strains isolated from horse feces. Microb Pathog 132:117–123. https://doi.org/10.1016/j.micpath.2019.04.032

    Article  CAS  PubMed  Google Scholar 

  33. Adesulu-Dahunsi AT, Sanni AI, Jeyaram K (2017) Rapid differentiation among Lactobacillus, Pediococcus and Weissella species from some Nigerian indigenous fermented foods. LWT - Food Sci Technol 77:39–44. https://doi.org/10.1016/j.lwt.2016.11.007

    Article  CAS  Google Scholar 

  34. Shin J, Oh G, Bang M et al (2020) Complete genome sequence of Weissella cibaria strain BM2, isolated from Korean kimchi. Microbiol Resour Announc 9:10–11

    Article  Google Scholar 

  35. Månberger A, Verbrugghe P, Guðmundsdóttir EE et al (2020) Taxogenomic assessment and genomic characterisation of Weissella cibaria strain 92 able to metabolise oligosaccharides derived from dietary fibres. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-62610-x

    Article  CAS  Google Scholar 

  36. Falasconi I, Fontana A, Patrone V et al (2020) Genome-assisted characterization of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa strains isolated from sorghum as starters for sourdough fermentation. Microorganisms 8:1–16. https://doi.org/10.3390/microorganisms8091388

    Article  CAS  Google Scholar 

  37. Patrone V, Al-Surrayai T, Romaniello F et al (2020) Integrated phenotypic-genotypic analysis of candidate probiotic Weissella cibaria strains isolated from dairy cows in Kuwait. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-020-09715-x

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mun SY, Chang HC (2020) Characterization of Weissella koreensis sk isolated from kimchi fermented at low temperature (Around 0◦ C) based on complete genome sequence and corresponding phenotype. Microorganisms 8:1–17. https://doi.org/10.3390/microorganisms8081147

    Article  CAS  Google Scholar 

  39. Kim E, Cho Y, Lee Y et al (2017) A proteomic approach for rapid identification of Weissella species isolated from Korean fermented foods on MALDI-TOF MS supplemented with an in-house database. Int J Food Microbiol 243:9–15. https://doi.org/10.1016/j.ijfoodmicro.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  40. Nacef M, Chevalier M, Chollet S et al (2017) MALDI-TOF mass spectrometry for the identi fi cation of lactic acid bacteria isolated from a French cheese : the Maroilles. Int J Food Microbiol 247:2–8. https://doi.org/10.1016/j.ijfoodmicro.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  41. Heperkan ZD, Bolluk M, Bülbül S (2020) Structural analysis and properties of dextran produced by Weissella confusa and the effect of different cereals on its rheological characteristics. Int J Biol Macromol 143:305–313. https://doi.org/10.1016/j.ijbiomac.2019.12.036

    Article  CAS  PubMed  Google Scholar 

  42. Jeong SE, Chun BH, Kim KH et al (2018) Genomic and metatranscriptomic analyses of Weissella koreensis reveal its metabolic and fermentative features during kimchi fermentation. Food Microbiol 76:1–10. https://doi.org/10.1016/j.fm.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  43. Rizzello CG, Coda R, Wang Y et al (2019) Characterization of indigenous Pediococcus pentosaceus, Leuconostoc kimchii, Weissella cibaria and Weissella confusa for faba bean bioprocessing. Int J Food Microbiol 302:24–34. https://doi.org/10.1016/j.ijfoodmicro.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  44. Alcázar-Valle M, Lugo-Cervantes E, Mojica L et al (2020) Bioactive compounds, antioxidant activity, and antinutritional content of legumes: a comparison between four Phaseolus Species. Molecules 25:3528

    Article  Google Scholar 

  45. López-Hernández M, Rodríguez-Alegría ME, López-Munguía A, Wacher C (2018) Evaluation of xylan as carbon source for Weissella spp., a predominant strain in pozol fermentation. LWT - Food Sci Technol 89:192–197. https://doi.org/10.1016/j.lwt.2017.10.030

    Article  Google Scholar 

  46. Cheng JR, Liu XM, Chen ZY et al (2016) Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chem 213:721–727. https://doi.org/10.1016/j.foodchem.2016.07.032

    Article  CAS  PubMed  Google Scholar 

  47. Abriouel H, Lerma LL, del Casado Muñoz MC et al (2015) The controversial nature of the Weissella genus: Technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health. Front Microbiol 6:1–14. https://doi.org/10.3389/fmicb.2015.01197

    Article  Google Scholar 

  48. Kang MS, Lee DS, Lee SA et al (2020) Effects of probiotic bacterium Weissella cibaria CMU on periodontal health and microbiota: a randomised, double-blind, placebo-controlled trial. BMC Oral Health 20:1–12. https://doi.org/10.1186/s12903-020-01231-2

    Article  CAS  Google Scholar 

  49. Lee DS, Lee SA, Kim M et al (2020) Reduction of halitosis by a tablet containing Weissella cibaria CMU: a randomized, double-blind, placebo-controlled study. J Med Food 23:649–657. https://doi.org/10.1089/jmf.2019.4603

    Article  CAS  PubMed  Google Scholar 

  50. Lee YJ, Lee A, Yoo HJ et al (2018) Supplementation with the probiotic strain Weissella cibaria JW15 enhances natural killer cell activity in nondiabetic subjects. J Funct Foods 48:153–158. https://doi.org/10.1016/j.jff.2018.07.009

    Article  CAS  Google Scholar 

  51. Adebayo-Tayo B, Ishola R, Oyewunmi T (2018) Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol Reports 19:e00271. https://doi.org/10.1016/j.btre.2018.e00271

    Article  Google Scholar 

  52. Elshaghabee FMF, Ghadimi D, Habermann D et al (2020) Effect of oral administration of Weissella confusa on fecal and plasma ethanol concentrations, lipids and glucose metabolism in Wistar rats fed high fructose and fat diet. Hepatic Med Evid Res 12:93–106

    Article  Google Scholar 

  53. Kim HY, Bae WY, Yu HS et al (2020) Inula britannica fermented with probiotic Weissella cibaria D30 exhibited anti-inflammatory effect and increased viability in RAW 264.7 cells. Food Sci Biotechnol 29:569–578. https://doi.org/10.1007/s10068-019-00690-w

    Article  CAS  PubMed  Google Scholar 

  54. Lim SK, Kwon M-S, Lee J et al (2017) Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci Rep 7:1–9. https://doi.org/10.1038/srep40040

    Article  CAS  Google Scholar 

  55. Park HE, Lee WK (2018) Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J Funct Foods 49:518–525. https://doi.org/10.1016/j.jff.2018.09.003

    Article  CAS  Google Scholar 

  56. Fonseca JF, Alvim LB, Nunes C et al (2019) Probiotic effect of Bifidobacterium longum 51A and Weissella paramesenteroides WpK4 on gerbils infected with Giardia lamblia. J Appl Microbiol 127:1184–1191. https://doi.org/10.1111/jam.14338

    Article  CAS  PubMed  Google Scholar 

  57. Do K, Park H, Kang M et al (2019) Effects of Weissella cibaria CMU on halitosis and calculus, plaque, and gingivitis indices in beagles. J Vet Dent 36:135–142. https://doi.org/10.1177/0898756419872562

    Article  PubMed  Google Scholar 

  58. Kim J, Jung BH, Lee JH et al (2020) Effect of Weissella cibaria on the reduction of periodontal tissue destruction in mice. J Periodontol 1–8. https://doi.org/10.1002/jper.19-0288

  59. Perlman RL (2016) Mouse models of human disease: an evolutionary perspective. Evol Med Public Heal 2016:170–176. https://doi.org/10.1093/emph/eow014

    Article  Google Scholar 

  60. Stratakos AC, Linton M, Tessema GT et al (2016) Effect of high pressure processing in combination with Weissella viridescens as a protective culture against Listeria monocytogenes in ready-to-eat salads of different pH. Food Control 61:6–12. https://doi.org/10.1016/j.foodcont.2015.09.020

    Article  Google Scholar 

  61. Lakra AK, Domdi L, Hanjon G et al (2020) Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT - Food Sci Technol 125:109261. https://doi.org/10.1016/j.lwt.2020.109261

    Article  CAS  Google Scholar 

  62. Pabari K, Pithva S, Kothari C et al (2020) Evaluation of probiotic properties and prebiotic utilization potential of Weissella paramesenteroides isolated from fruits. Probiotics Antimicrob Proteins 12:1126–1138. https://doi.org/10.1007/s12602-019-09630-w

    Article  CAS  PubMed  Google Scholar 

  63. Sharma S, Kandasamy S, Kavitake D, Shetty PH (2018) Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT - Food Sci Technol 97:53–60. https://doi.org/10.1016/j.lwt.2018.06.033

    Article  CAS  Google Scholar 

  64. Silva MS, Ramos CL, González-Avila M et al (2017) Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino – a typical Mexican beverage. LWT - Food Sci Technol 86:227–232. https://doi.org/10.1016/j.lwt.2017.08.009

    Article  CAS  Google Scholar 

  65. Ait Seddik H, Bendali F, Cudennec B, Drider D (2017) Anti-pathogenic and probiotic attributes of Lactobacillus salivarius and Lactobacillus plantarum strains isolated from feces of Algerian infants and adults. Res Microbiol 168:244–254. https://doi.org/10.1016/j.resmic.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  66. Cavalcante RGS, de Albuquerque TMR, de Luna Freire MO et al (2019) The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutr Metab Cardiovasc Dis 29:1408–1417. https://doi.org/10.1016/j.numecd.2019.08.003

    Article  CAS  PubMed  Google Scholar 

  67. Liang X, Lv Y, Zhang Z et al (2020) Study on intestinal survival and cholesterol metabolism of probiotics. LWT - Food Sci Technol 124:109–132. https://doi.org/10.1016/j.lwt.2020.109132

    Article  CAS  Google Scholar 

  68. Deatraksa J, Sunthornthummas S, Rangsiruji A et al (2018) Isolation of folate-producing Weissella spp. from Thai fermented fish (Plaa Som Fug). LWT - Food Sci Technol 89:388–391. https://doi.org/10.1016/j.lwt.2017.11.016

    Article  CAS  Google Scholar 

  69. Hsieh YC, Chou LS, Lin CH et al (2019) Serum folate levels in bipolar disorder: a systematic review and meta-analysis. BMC Psychiatry 19:1–9. https://doi.org/10.1186/s12888-019-2269-2

    Article  Google Scholar 

  70. Bounaix MS, Gabriel V, Morel S et al (2009) Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J Agric Food Chem 57:10889–10897. https://doi.org/10.1021/jf902068t

    Article  CAS  PubMed  Google Scholar 

  71. Hu Y, Gänzle MG (2018) Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int J Food Microbiol 280:27–34. https://doi.org/10.1016/j.ijfoodmicro.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  72. Kanimozhi J, Ganesh Moorthy I, Sivashankar R, Sivasubramanian V (2017) Optimization of dextran production by Weissella cibaria NITCSK4 using response surface methodology-genetic algorithm based technology. Carbohydr Polym 174:103–110. https://doi.org/10.1016/j.carbpol.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  73. Devi PB, Kavitake D, Shetty PH (2016) Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int J Biol Macromol 93:822–828. https://doi.org/10.1016/j.ijbiomac.2016.09.054

    Article  CAS  PubMed  Google Scholar 

  74. Ye G, Chen Y, Wang C et al (2018) Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int J Biol Macromol 120:1315–1321. https://doi.org/10.1016/j.ijbiomac.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  75. Yu Y-J, Chen Z, Chen PT, Ng I-S (2018) Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J Biosci Bioeng 126:769–777. https://doi.org/10.1016/j.jbiosc.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  76. Zhu Y, Wang C, Jia S et al (2018) Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. Int J Biol Macromol 115:820–828. https://doi.org/10.1016/j.ijbiomac.2018.04.067

    Article  CAS  PubMed  Google Scholar 

  77. Baruah R, Deka B, Goyal A (2017) Purification and characterization of dextransucrase from Weissella cibaria RBA12 and its application in in vitro synthesis of prebiotic oligosaccharides in mango and pineapple juices. LWT - Food Sci Technol 84:449–456. https://doi.org/10.1016/j.lwt.2017.06.012

    Article  CAS  Google Scholar 

  78. Shi Q, Juvonen M, Hou Y et al (2016) Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase. Food Chem 190:226–236. https://doi.org/10.1016/j.foodchem.2015.05.090

    Article  CAS  PubMed  Google Scholar 

  79. Nolte J, Kempa A, Schlockermann A et al (2019) Glycosylation of caffeic acid and structural analogues catalyzed by novel glucansucrases from Leuconostoc and Weissella species. Biocatal Agric Biotechnol 19. https://doi.org/10.1016/j.bcab.2019.101114

  80. Rosca I, Petrovici AR, Peptanariu D et al (2018) Biosynthesis of dextran by Weissella confusa and its in vitro functional characteristics. Int J Biol Macromol 107:1765–1772. https://doi.org/10.1016/j.ijbiomac.2017.10.048

    Article  CAS  PubMed  Google Scholar 

  81. Kavitake D, Devi PB, Shetty PH (2016) Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. Int J Biol Macromol 86:681–689. https://doi.org/10.1016/j.ijbiomac.2016.01.099

    Article  CAS  PubMed  Google Scholar 

  82. Baruah R, Maina NH, Katina K et al (2016) Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int J Food Microbiol 242:124–131. https://doi.org/10.1016/j.ijfoodmicro.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  83. Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135. https://doi.org/10.1007/s00253-015-7172-2

    Article  CAS  PubMed  Google Scholar 

  84. Zannini E, Jeske S, Lynch KM, Arendt EK (2018) Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. Int J Food Microbiol 268:19–26. https://doi.org/10.1016/j.ijfoodmicro.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  85. Rolim PM, Hu Y, Gänzle MG (2019) Sensory analysis of juice blend containing isomalto-oligosaccharides produced by fermentation with Weissella cibaria. Food Res Int 124:86–92. https://doi.org/10.1016/j.foodres.2018.08.089

    Article  CAS  PubMed  Google Scholar 

  86. Tang X, Zhang B, Huang W et al (2019) Hydration, water distribution and microstructure of gluten during freeze thaw process: Role of a high molecular weight dextran produced by Weissella confusa QS813. Food Hydrocoll 90:377–384. https://doi.org/10.1016/j.foodhyd.2018.10.025

    Article  CAS  Google Scholar 

  87. Xu Y, Pitkänen L, Maina NH et al (2018) Interactions between fava bean protein and dextrans produced by Leuconostoc pseudomesenteroides DSM 20193 and Weissella cibaria Sj 1b. Carbohydr Polym 190:315–323. https://doi.org/10.1016/j.carbpol.2018.02.082

    Article  CAS  PubMed  Google Scholar 

  88. Xu Y, Wang Y, Coda R et al (2017) In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. Int J Food Microbiol 248:63–71. https://doi.org/10.1016/j.ijfoodmicro.2017.02.012

    Article  CAS  PubMed  Google Scholar 

  89. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria - a review. Int J Food Microbiol 105:281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  90. Toomey N, Bolton D, Fanning S (2010) Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res Microbiol 161:127–135. https://doi.org/10.1016/j.resmic.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  91. Džidić S, Šušković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46:11–21

    Google Scholar 

  92. Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  93. Perin LM, Miranda RO, Todoroc SD et al (2014) Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. Int J Food Microbiol 185:121–126. https://doi.org/10.1016/j.ijfoodmicro.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  94. Fhoula I, Rehaiem A, Najjari A et al (2018) Functional probiotic assessment and in vivo cholesterol-lowering efficacy of Weissella sp. associated with arid lands living-hosts. Biomed Res Int 2018:11 pages. https://doi.org/10.1155/2018/1654151

  95. Mortezaei F, Royan M, Noveirian HA et al (2020) In vitro assessment of potential probiotic characteristics of indigenous Lactococcus lactis and Weissella oryzae isolates from rainbow trout (Oncorhynchus mykiss Walbaum). J Appl Microbiol 129:1004–1019. https://doi.org/10.1111/jam.14652

    Article  CAS  PubMed  Google Scholar 

  96. Quattrini M, Korcari D, Ricci G, Fortina MG (2019) A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. J Appl Microbiol 128:500–512. https://doi.org/10.1111/jam.14483

    Article  CAS  PubMed  Google Scholar 

  97. Kang MS, Yeu JE, Hong SP (2019) Safety evaluation of oral care probiotics Weissella cibaria CMU and CMS1 by phenotypic land genotypic analysis. Int J Mol Sci 20:22 pages. https://doi.org/10.3390/ijms20112693

  98. Figueiredo SP, Boari CA, de Souza Costa Sobrinho P et al (2015) Características do leite cru e do queijo Minas artesanal do Serro em diferentes meses. Arch Vet Sci 20:68–82. https://doi.org/10.5380/avs.v20i1.37243

    Article  Google Scholar 

  99. Ortega JCC, Fajardo R, Irgang R et al (2018) Isolation characterization, virulence potential of Weissella ceti responsible for weissellosis outbreak in rainbow trout (Oncorhynchus mykiss) cultured in Mexico. Transbound Emerg Dis 65:1401–1407. https://doi.org/10.1111/tbed.12978

    Article  CAS  PubMed  Google Scholar 

  100. Welch TJ, Good CM (2013) Mortality associated with weissellosis (Weissella sp.) in USA farmed rainbow trout: potential for control by vaccination. Aquaculture 388–391:122–127. https://doi.org/10.1016/j.aquaculture.2013.01.021

    Article  Google Scholar 

  101. Aberkane S, Didelot MN, Carrière C et al (2017) Bactériémie à Weissella confusa: un pathogène opportuniste sous-estimé. Med Mal Infect 47:297–299. https://doi.org/10.1016/j.medmal.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  102. Freedman SB, Williamson-Urquhart S, Farion KJ et al (2018) Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med 379:2015–2026. https://doi.org/10.1056/NEJMoa1802597

    Article  CAS  PubMed  Google Scholar 

  103. Schnadower D, Tarr PI, Casper T et al (2018) Lactobacillus rhamnosus GG versus placebo for acute gastroenteritis in children. N Engl J Med 379:2002–2014. https://doi.org/10.1056/NEJMoa1802598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Laulund S, Wind A, Derkx PMF, Zuliani V (2017) Regulatory and safety requirements for food cultures. Microorganisms 5:28. https://doi.org/10.3390/microorganisms5020028

    Article  CAS  PubMed Central  Google Scholar 

  105. Sturino JM (2018) Literature-based safety assessment of an agriculture- and animal-associated microorganism: Weissella confusa. Regul Toxicol Pharmacol 95:142–152. https://doi.org/10.1016/j.yrtph.2018.03.013

    Article  PubMed  Google Scholar 

  106. Cupi D, Elvig-Jørgensen SG (2019) Safety assessment of Weissella confusa – a direct-fed microbial candidate. Regul Toxicol Pharmacol 107:104414. https://doi.org/10.1016/j.yrtph.2019.104414

    Article  PubMed  Google Scholar 

  107. Panel EB, Koutsoumanis K, Allende A et al (2019) The list of QPS status recommended biological agents for safety risk assessments carried out by EFSA. https://doi.org/10.5281/ZENODO.3336268

  108. Tenea GN, Hurtado P, Ortega C (2020) A novel Weissella cibaria strain UTNGt21O isolated from wild solanum quitoense fruit: genome sequence and characterization of a peptide with highly inhibitory potential toward Gram-negative bacteria. Foods 9(9):1242. https://doi.org/10.3390/foods9091242

    Article  CAS  PubMed Central  Google Scholar 

  109. Pelyuntha W, Chaiyasut C, Kantachote D, Sirilun S (2020) Organic acids and 2,4-Di-tert-butylphenol: major compounds of Weissella confusa WM36 cell-free supernatant against growth, survival and virulence of Salmonella Typhi. PeerJ 8:e8410. https://doi.org/10.7717/peerj.8410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lakra AK, Domdi L, Tilwani YM, Arul V (2020) Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. Int J Biol Macromol 143:797–805. https://doi.org/10.1016/j.ijbiomac.2019.09.139

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Belo Horizonte, MG, Brazil). Research at Lille University is supported by CPER/FEDER Alibiotech grant 2016-2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luís Augusto Nero or Antônio Fernandes de Carvalho.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, C.G., Fusieger, A., Milião, G.L. et al. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics & Antimicro. Prot. 13, 915–925 (2021). https://doi.org/10.1007/s12602-021-09751-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09751-1

Keywords

Navigation