Skip to main content

Advertisement

Log in

In vitro and In vivo Antibacterial Effects of Nisin Against Streptococcus suis

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Nisin is a promising therapeutic candidate because of its potent activity against Gram-positive bacteria. The present study aimed to describe the in vitro and in vivo antibacterial effects of nisin against Streptococcus suis, an important zoonotic pathogen. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of nisin against different S. suis strains ranged from 0.12 to 4.0 μg/mL and from 0.25 to 8.0 μg/mL, respectively. Time-killing curve assays illustrated that nisin killed 100% of tested virulent S. suis strains within 4 h when used at 2× MIC, which indicates the rapid bactericidal activity of nisin against the bacteria. Transmission and scanning electron microscopy revealed that nisin destroyed S. suis cell membrane integrity and affected its cellular ultrastructure, including a significantly wrinkled surface, intracellular content leakage, and cell lysis. In addition, nisin inhibited biofilm formation by S. suis in a concentration-dependent manner and exhibited strong degrading activities against preformed biofilms. More importantly, nisin displayed antimicrobial activity against S. suis infection in vivo. Upon treatment with 5.0–10 mg/kg nisin solution, the survival rates of mice challenged with a lethal dose of virulent S. suis virulent ranged 87.5–100%. Nisin significantly decreased bacterial proliferation and translocation in the mouse spleen, brain, and blood. These results indicate that nisin has potential as a novel antimicrobial agent for the clinical treatment and prevention of infection caused by S. suis in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data during the study appear in the submitted article.

References

  1. Lun ZR, Wang QP, Chen XG, Li AX, Zhu XQ (2007) Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis 7(3):201–209. https://doi.org/10.1016/S1473-3099(07)70001-4

    Article  PubMed  Google Scholar 

  2. Dutkiewicz J, Zajac V, Sroka J, Wasinski B, Cisak E, Sawczyn A, Kloc A, Wojcik-Fatla A (2018) Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II - pathogenesis. Annals of agricultural and environmental medicine : AAEM 25 (1):186–203. https://doi.org/10.26444/aaem/85651

  3. Gottschalk M, Xu J, Calzas C, Segura M (2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5(3):371–391. https://doi.org/10.2217/fmb.10.2

    Article  PubMed  Google Scholar 

  4. Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M (2014) Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 3(6):e45. https://doi.org/10.1038/emi.2014.45

    Article  PubMed  PubMed Central  Google Scholar 

  5. Huang J, Liu X, Chen H, Chen L, Gao X, Pan Z, Wang J, Lu C, Yao H, Wang L, Wu Z (2019) Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13123

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schultsz C, Jansen E, Keijzers W, Rothkamp A, Duim B, Wagenaar JA, van der Ende A (2012) Differences in the population structure of invasive Streptococcus suis strains isolated from pigs and from humans in the Netherlands. PLoS ONE 7(5):e33854. https://doi.org/10.1371/journal.pone.0033854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Z, Zhang W, Lu C (2008) Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 45(3):159–166. https://doi.org/10.1016/j.micpath.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  8. Zhu H, Huang D, Zhang W, Wu Z, Lu Y, Jia H, Wang M, Lu C (2011) The novel virulence-related gene stp of Streptococcus suis serotype 9 strain contributes to a significant reduction in mouse mortality. Microb Pathog 51(6):442–453. https://doi.org/10.1016/j.micpath.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  9. Kerdsin A, Hatrongjit R, Gottschalk M, Takeuchi D, Hamada S, Akeda Y, Oishi K (2017) Emergence of Streptococcus suis serotype 9 infection in humans. J Microbiol Immunol Infect 50(4):545–546. https://doi.org/10.1016/j.jmii.2015.06.011

    Article  PubMed  Google Scholar 

  10. Palmieri C, Varaldo PE, Facinelli B (2011) Streptococcus suis, an emerging drug-resistant animal and human pathogen. Front Microbiol 2:235. https://doi.org/10.3389/fmicb.2011.00235

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cromwell GL (2002) Why and how antibiotics are used in swine production. Anim Biotechnol 13(1):7–27. https://doi.org/10.1081/ABIO-120005767

    Article  PubMed  Google Scholar 

  12. Varela NP, Gadbois P, Thibault C, Gottschalk M, Dick P, Wilson J (2013) Antimicrobial resistance and prudent drug use for Streptococcus suis. Anim Health Res Rev 14(1):68–77. https://doi.org/10.1017/S1466252313000029

    Article  PubMed  Google Scholar 

  13. Vela AI, Moreno MA, Cebolla JA, Gonzalez S, Latre MV, Dominguez L, Fernandez-Garayzabal JF (2005) Antimicrobial susceptibility of clinical strains of Streptococcus suis isolated from pigs in Spain. Vet Microbiol 105(2):143–147. https://doi.org/10.1016/j.vetmic.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  14. Hoa NT, Chieu TT, Nghia HD, Mai NT, Anh PH, Wolbers M, Baker S, Campbell JI, Chau NV, Hien TT, Farrar J, Schultsz C (2011) The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997–2008. BMC Infect Dis 11:6. https://doi.org/10.1186/1471-2334-11-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonifait L, Grignon L, Grenier D (2008) Fibrinogen induces biofilm formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol 74(15):4969–4972. https://doi.org/10.1128/AEM.00558-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107(5):475–487. https://doi.org/10.1016/j.jbiosc.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  17. Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65(3):455–476. https://doi.org/10.1007/s00018-007-7171-2

    Article  CAS  PubMed  Google Scholar 

  18. Al Atya AK, Abriouel H, Kempf I, Jouy E, Auclair E, Vachee A, Drider D (2016) Effects of colistin and bacteriocins combinations on the In vitro growth of Escherichia coli strains from swine origin. Probiotics Antimicrob Proteins 8(4):183–190. https://doi.org/10.1007/s12602-016-9227-9

    Article  CAS  PubMed  Google Scholar 

  19. Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G, Sahl HG (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30(2):317–327

    Article  CAS  Google Scholar 

  20. Severina E, Severin A, Tomasz A (1998) Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother 41(3):341–347

    Article  CAS  Google Scholar 

  21. Brand AM, Smith C, Dicks LM (2013) The efects of continuous in vivo administration of nisin on Staphylococcus aureus infection and immune response in mice. Probiotics Antimicrob Proteins 5(4):279–286. https://doi.org/10.1007/s12602-013-9141-3

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein BP, Wei J, Greenberg K, Novick R (1998) Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother 42(2):277–278

    Article  CAS  Google Scholar 

  23. Tong Z, Zhang Y, Ling J, Ma J, Huang L, Zhang L (2014) An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS ONE 9(2):e89209. https://doi.org/10.1371/journal.pone.0089209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerr KG, Copley RM, Wilcoy MH (1997) Activity of nisin against Clostridium difficile. Lancet 349(9057):1026–1027

    Article  CAS  Google Scholar 

  25. Bartoloni A, Mantella A, Goldstein BP, Dei R, Benedetti M, Sbaragli S, Paradisi F (2004) In-vitro activity of nisin against clinical isolates of Clostridium difficile. J Chemother 16(2):119–121. https://doi.org/10.1179/joc.2004.16.2.119

    Article  CAS  PubMed  Google Scholar 

  26. Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP (2018) Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 4:9. https://doi.org/10.1038/s41522-018-0053-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Biomedical applications of nisin. J Appl Microbiol 120(6):1449–1465. https://doi.org/10.1111/jam.13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fernandez L, Delgado S, Herrero H, Maldonado A, Rodriguez JM (2008) The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. J Hum Lact 24(3):311–316. https://doi.org/10.1177/0890334408317435

    Article  PubMed  Google Scholar 

  29. De Kwaadsteniet M, Doeschate KT, Dicks LM (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48(1):65–70. https://doi.org/10.1111/j.1472-765X.2008.02488.x

    Article  CAS  PubMed  Google Scholar 

  30. Hansen JN (1994) Nisin as a model food preservative. Crit Rev Food Sci Nutr 34(1):69–93. https://doi.org/10.1080/10408399409527650

    Article  CAS  PubMed  Google Scholar 

  31. Lebel G, Piche F, Frenette M, Gottschalk M, Grenier D (2013) Antimicrobial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides 50:19–23. https://doi.org/10.1016/j.peptides.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  32. Zhu H, Zhou J, Ni Y, Yu Z, Mao A, Hu Y, Wang W, Zhang X, Wen L, Li B, Wang X, Yu Y, Lv L, Guo R, Lu C, He K (2014) Contribution of eukaryotic-type serine/threonine kinase to stress response and virulence of Streptococcus suis. PLoS ONE 9(3):e91971. https://doi.org/10.1371/journal.pone.0091971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clinical and Laboratory Standards Institute C (2020) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th ed, CLSI standard M07

  34. Meng X, Shi Y, Ji W, Zhang J, Wang H, Lu C, Sun J, Yan Y (2011) Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen. Streptococcus suis Appl Environ Microbiol 77:8272–8279. https://doi.org/10.1128/AEM.05151-11

    Article  CAS  PubMed  Google Scholar 

  35. Jin H, Zhou R, Kang M, Luo R, Cai X, Chen H (2006) Biofilm formation by field isolates and reference strains of Haemophilus parasuis. Vet Microbiol 118(1–2):117–123. https://doi.org/10.1016/j.vetmic.2006.07.009

    Article  CAS  PubMed  Google Scholar 

  36. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hebraud M, Jaglic Z, Kacaniova M, Knochel S, Lourenco A, Mergulhao F, Meyer RL, Nychas G, Simoes M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351. https://doi.org/10.1080/1040841X.2016.1208146

    Article  CAS  PubMed  Google Scholar 

  37. Cho J, Lee DG (2011) The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism. Biochem Biophys Res Commun 405(3):422–427. https://doi.org/10.1016/j.bbrc.2011.01.046

    Article  CAS  PubMed  Google Scholar 

  38. Campion A, Casey PG, Field D, Cotter PD, Hill C, Ross RP (2013) In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol 13:23. https://doi.org/10.1186/1471-2180-13-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupta SM, Aranha CC, Reddy KV (2008) Evaluation of developmental toxicity of microbicide nisin in rats. Food Chem Toxicol 46(2):598–603. https://doi.org/10.1016/j.fct.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  40. Zasloff M (2019) Antimicrobial peptides of multicellular organisms: my perspective. Adv Exp Med Biol 1117:3–6. https://doi.org/10.1007/978-981-13-3588-4_1

    Article  CAS  PubMed  Google Scholar 

  41. Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651. https://doi.org/10.2217/fmb.11.27

    Article  CAS  PubMed  Google Scholar 

  42. Heo WS, Kim EY, Kim YR, Hossain MT, Kong IS (2012) Salt effect of nisin Z isolated from a marine fish on the growth inhibition of Streptococcus iniae, a pathogen of streptococcosis. Biotechnol Lett 34(2):315–320. https://doi.org/10.1007/s10529-011-0766-6

    Article  CAS  PubMed  Google Scholar 

  43. Tong Z, Zhang L, Ling J, Jian Y, Huang L, Deng D (2014) An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS ONE 9(6):e99513. https://doi.org/10.1371/journal.pone.0099513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mantovani HC, Russell JB (2001) Nisin resistance of Streptococcus bovis. Appl Environ Microbiol 67(2):808–813. https://doi.org/10.1128/AEM.67.2.808-813.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonev BB, Breukink E, Swiezewska E, De Kruijff B, Watts A (2004) Targeting extracellular pyrophosphates underpins the high selectivity of nisin. FASEB J 18(15):1862–1869. https://doi.org/10.1096/fj.04-2358com

    Article  CAS  PubMed  Google Scholar 

  46. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  47. de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16(5):580–589. https://doi.org/10.1016/j.mib.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  48. Grenier D, Grignon L, Gottschalk M (2009) Characterisation of biofilm formation by a Streptococcus suis meningitis isolate. Vet J 179(2):292–295. https://doi.org/10.1016/j.tvjl.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  49. Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, Kapila YL (2015) Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol 6:617. https://doi.org/10.3389/fmicb.2015.00617

    Article  PubMed  PubMed Central  Google Scholar 

  50. Godoy-Santos F, Pitts B, Stewart PS, Mantovani HC (2019) Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. Microbiology 165(7):761–771. https://doi.org/10.1099/mic.0.000804

    Article  CAS  PubMed  Google Scholar 

  51. Santos R, Ruza D, Cunha E, Tavares L, Oliveira M (2019) Diabetic foot infections: application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms. PLoS ONE 14(7):e0220000. https://doi.org/10.1371/journal.pone.0220000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kajwadkar R, Shin JM, Lin GH, Fenno JC, Rickard AH, Kapila YL (2017) High-purity nisin alone or in combination with sodium hypochlorite is effective against planktonic and biofilm populations of Enterococcus faecalis. J Endod 43(6):989–994. https://doi.org/10.1016/j.joen.2017.01.034

    Article  PubMed  Google Scholar 

  53. Hagiwara A, Imai N, Nakashima H, Toda Y, Kawabe M, Furukawa F, Delves-Broughton J, Yasuhara K, Hayashi SM (2010) A 90-day oral toxicity study of nisin A, an anti-microbial peptide derived from Lactococcus lactis subsp. lactis, in F344 rats. Food Chem Toxicol 48 (8–9):2421–2428. https://doi.org/10.1016/j.fct.2010.06.002

  54. Zhao F, Yang N, Wang X, Mao R, Hao Y, Li Z, Wang X, Teng D, Fan H, Wang J (2019) In vitro/vivo mechanism of action of MP1102 with low/nonresistance against Streptococcus suis Type 2 strain CVCC 3928. Front Cell Infect Microbiol 9:48. https://doi.org/10.3389/fcimb.2019.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiao J, Mao R, Teng D, Wang X, Hao Y, Yang N, Wang X, Feng X, Wang J (2017) In vitro and in vivo antibacterial effect of NZ2114 against Streptococcus suis type 2 infection in mice peritonitis models. AMB Express 7(1):44. https://doi.org/10.1186/s13568-017-0347-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dominguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M (2007) Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Immunol 179(3):1842–1854

    Article  CAS  Google Scholar 

  57. Brand AM, de Kwaadsteniet M, Dicks LM (2010) The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in mice. Lett Appl Microbiol 51(6):645–649. https://doi.org/10.1111/j.1472-765X.2010.02948.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Joe Barber Jr., PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This work was supported by the National Key Research and Development Program (2018YFD0500101), the Special Fund for Public Welfare Industry of Chinese Ministry of Agriculture (201303041), the National Natural Sciences Foundation of China (31302114), and the Innovation of Agricultural Sciences in Jiangsu province (CX(14)5042). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: HZ, LH and KH. Performed the experiments: HZ, LH and DW. Analyzed the data: HZ, LH. Contributed reagents/materials/analysis tools: YN, ZY, JZ, BL and WZ. Wrote and revised the manuscript: HZ, LH and KH. All authors read, advised and approved the final manuscript.

Corresponding authors

Correspondence to Haodan Zhu or Kongwang He.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Han, L., Ni, Y. et al. In vitro and In vivo Antibacterial Effects of Nisin Against Streptococcus suis. Probiotics & Antimicro. Prot. 13, 598–610 (2021). https://doi.org/10.1007/s12602-020-09732-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09732-w

Keywords

Navigation