Skip to main content
Log in

Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Freeze-dried banana powder represents an ideal source of nutrients and has not yet been used for probiotic incorporation. In this study, microencapsulation by freeze drying of probiotics Lactobacillus acidophilus and Lactobacillus casei was made using whey protein isolate (WPI), fructooligosaccharides (FOS), and their combination (WPI + FOS) at ratio (1:1). Higher encapsulation yield was found for (WPI + FOS) microspheres (98%). Further, microcapsules of (WPI + FOS) were used to produce a freeze-dried banana powder which was analyzed for bacterial viability under simulated gastrointestinal fluid (SGIF), stability during storage at 4 °C and 25 °C, and chemical and sensory properties. Results revealed that (WPI + FOS) microcapsules significantly increased bacteria stability in the product over 30 days of storage at 4 °C averaging (≥ 8.57 log CFU/g) for L. acidophilus and (≥ 7.61 log CFU/g) for L. Casei as compared to free cells. Bacteria encapsulated in microspheres (WPI + FOS) were not significantly affected by the SGIF, remaining stable up to 7.05 ± 0.1 log CFU/g for L.acidophilus and 5.48 ± 0.1 log CFU/g for L.casei after 90 min of incubation at pH 2 compared to free cells which showed minimal survival. Overall, encapsulated probiotics enriched freeze-dried banana powders received good sensory scores; they can therefore serve as safe probiotics food carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Article  Google Scholar 

  2. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota – introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  Google Scholar 

  3. Doleyres Y, Lacroix C (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    Article  CAS  Google Scholar 

  4. Fu N, Chen XD (2011) Towards a maximal cell survival in convective thermal drying processes. Food Res Int 44:1127–1149

    Article  CAS  Google Scholar 

  5. Hsu YL, Chu IM (1992) Poly(ethylenimine)-reinforced liquid-core capsules for the cultivation of hybridoma cells. Biotechnol Bioeng 40:1300–1308

    Article  CAS  Google Scholar 

  6. Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yogurt. Int Dairy J 14:505–515

    Article  CAS  Google Scholar 

  7. Guerin D, Vuillemard J, Subirade M (2003) Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against gastric juice and bile. J Food Prot 66:2076–2084

    Article  CAS  Google Scholar 

  8. Ainsley Reid A, Champagne CP, Gardner N, Fustier P, Vuillemard JC (2007) Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. J Food Sci 72:31–37

    Article  Google Scholar 

  9. Rajam R, Bharath Kumar S, Prabhasankar P, Anandharamakrishnan C (2015) Microencapsulation of Lactobacillus plantarum MTCC5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. LWT Food Sci Technol 52(7):4029–4041

    CAS  Google Scholar 

  10. Wang J, Zhi LY, Chen RR, Bao JW, Yang GM (2007) Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying. Food Chem 104(4):1516–1521

    Article  CAS  Google Scholar 

  11. Thompson Coon J, Ernst E (2002) Systematic review: herbal medicinal products for non-ulcer dyspepsia. Aliment Pharmacol Ther 16:1689–1699

    Article  CAS  Google Scholar 

  12. Lee HM, Lee Y (2008) A differential medium for lactic acid-producing bacteria in a mixed culture. Lett Appl Microbiol 46:676–681

    Article  Google Scholar 

  13. Rajam R, Karthik P, Parthasarathi S, Joseph G, Anandharamakrishnan C (2012) Effect of whey protein–alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J Funct Foods 4:891–898

    Article  CAS  Google Scholar 

  14. Dissanayake M, Vasiljevic T (2009) Functional properties of whey proteins affected by heat treatment and hydrodynamic high-pressure shearing. J Dairy Sci 92:1387–1397

    Article  CAS  Google Scholar 

  15. Heidebach T, Först P, Kulozik U (2009) Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. Int Dairy J 19(2):77–84

    Article  CAS  Google Scholar 

  16. Manica I (1997) Banana. Porto Alegre: Cinco Continentes. Frutic Trop 4:485

    Google Scholar 

  17. Aurore G, Parfait B, Fahrasmane L (2009) Bananas raw materials for making processed food products. Trends Food Sci Technol 20:78–91

    Article  CAS  Google Scholar 

  18. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colormetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  19. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  20. De Knegt RJ, Brink HVD (1998) Improvement of the drying oven method for the determination of the moisture content of milk powder. Int Dairy J 8:733–738

    Article  Google Scholar 

  21. Van Slyke DD (1992) On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and reaction of the buffer solution. J Biol Chem 52:525–570

    Google Scholar 

  22. Jellinek G (1985) Sensory evaluation of food - theory and practice. Ellis Horwood Ltd. John Wiley and Son, Chichester England and VCH Verlagsgesellschaft mbh, Weinheim, p 218

    Google Scholar 

  23. Lian WC, Hsiao HC, Chou CC (2003) Viability of microencapsulated bacteria in simulated gastric juice and bile solution. Int J Food Microbiol 86:293–301

    Article  Google Scholar 

  24. United States Pharmacopeia and National Formulary (2002) United States Pharmacopeial Convention Inc., Rockville, MD, USA, 25th edn

  25. Agnihotri N, Mishra R, Goda C, Arora M (2012) Microencapsulation- a novel approach in drug delivery: a review. Indo Global J Pharm Sci 2:1–20

    CAS  Google Scholar 

  26. Bolla PA, de Serradell ML, de Urraza PJ, De Antoni GL (2011) Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J Dairy Res 78:15–22

    Article  CAS  Google Scholar 

  27. Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 66:2682–2684

    Article  CAS  Google Scholar 

  28. Capela P, Hay TKC, Shah NP (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int 39(2):203–211

    Article  CAS  Google Scholar 

  29. Heidebach T, Först P, Kulozik U (2010) Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng 98(3:309–316

    Article  Google Scholar 

  30. Bielecka M, Biedrzycka E, Majkowska A (2002) Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res Int 35:139–144

    Article  CAS  Google Scholar 

  31. Sanders ME, Marco MLF (2010) Food formats for effective delivery of probiotics. Annu Rev Food Sci Technol 1:65–85

    Article  Google Scholar 

  32. Zou Q, Zhao JX, Liu XM, Tian FW, Zhang HP, Zhang H, Chen W (2011) Microencapsulation of Bifidobacterium bifidum F-35 in reinforced alginate microspheres prepared by emulsification/internal gelation. Int J Food Sci Technol 46(8):1672–1678

    Article  CAS  Google Scholar 

  33. Ying D, Schwander S, Weerakkody R, Sanguansri L, Gantenbein-Demarchi C, Augustin MA (2013) Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: probiotic survival in fruit juice. J Funct Foods 5:98–105

    Article  CAS  Google Scholar 

  34. Rius N, Sole M, Francia A, Lorén JG (1994) Buffering capacity and membrane H+ conductance of lactic acid bacteria. FEMS Microbiol Lett 120:291–296

    Article  CAS  Google Scholar 

  35. Kailasapathy K, Masondole (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of feta cheese. Aust J Dairy Technol 60:252–258

    Google Scholar 

  36. Shan NP, Jelen P (1990) Survival of lactic acid bacteria and their lactases under acidic conditions. J Food Sci 55:506–509

    Article  Google Scholar 

  37. Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82(1–4):187–216

    Article  Google Scholar 

  38. Chaikham P, Apichartsrangkoon A, Worametrachanon S, Supraditareporn W, Chokiatirote E, Van de Wiele T (2013) Activities of free and encapsulated Lactobacillus acidophilus LA5 or Lactobacillus casei 01 in processed Logan juices on exposure to simulated gastrointestinal tract. J Sci Food Agric 93(9):2229–2238

    Article  CAS  Google Scholar 

  39. Charteris WP, Kelly PM, Morelli L, Collins JK (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84:759–768

    Article  CAS  Google Scholar 

  40. Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2003) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    Article  Google Scholar 

Download references

Funding

This work was supported by Applied Technology Research and Development Project of Harbin in 2017 (2017RAQXJ087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Ethics declarations

This article does not contain studies with human or animal subjects.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massounga Bora, A.F., Li, X., Zhu, Y. et al. Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. Probiotics & Antimicro. Prot. 11, 1330–1339 (2019). https://doi.org/10.1007/s12602-018-9464-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-018-9464-1

Keywords

Navigation