Skip to main content

Advertisement

Log in

Lactobacillus plantarum and Its Probiotic and Food Potentialities

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The number of studies claiming probiotic health effects of Lactobacillus plantarum is escalating. Lb. plantarum is a lactic acid bacterium found in diverse ecological niches, highlighting its particular capabilities of adaptation and genome plasticity. Another function that needs to be underlined is the capabilities of Lb. plantarum to produce diverse and potent bacteriocins, which are antimicrobial peptides with possible applications as food preservative or antibiotic complementary agents. Taken together, all these characteristics design Lb. plantarum as a genuine model for academic research and viable biological agent with promising applications. The present review aims at shedding light on the safety of Lb. plantarum and run through the main studies underpinning its beneficial claims. The mechanisms explaining probiotic-related features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felis GE, Dellaglio F (2007) Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    CAS  Google Scholar 

  2. Hutkins RW (2006) Microorganisms and metabolism. In: Hutkins RW (ed) Microbiology and Technology of Fermented Foods. Blackwell Publishing, Iowa

    Chapter  Google Scholar 

  3. Siezen RJ, Hylckama V, Vlieg JE (2011) Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Factories 10(Suppl1):S3

    Article  Google Scholar 

  4. Agaliya PJ, Jeevaratnam K (2012) Screening of Lactobacillus plantarum isolated from fermented Idli batter for probiotic properties. Afr J Biotechnol 11:12856–12864

    Google Scholar 

  5. Chang MH, Hong SF, Chen JH, Lin MF, Chen CS, Wang SC (2016) Antibacterial activity Lactobacillus plantarum isolated from fermented vegetables and investigation of the plantaricin genes. Afr J Microbiol Res 10:796–803

    Article  CAS  Google Scholar 

  6. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S, Dellaglio F (2005) Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Micr 55:1629–1634

    Article  CAS  Google Scholar 

  7. Khemariya P, Singh S, Jaiswal N, Chaurasia SNS (2016) Isolation and identification of Lactobacillus plantarum from vegetable samples. Food Biotechnol 30:94–62

    Article  CAS  Google Scholar 

  8. Schillinger U, Luke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microb 55:1901–1906

    CAS  Google Scholar 

  9. Valan-Arasu M, Jung MW, Kim DH, Park HS, Ilavenil S, Al-Dhabi NA, Choi KI (2015) Identification and phylogenetic characterization of novel Lactobacillus plantarum species and their metabolite profiles in grass silage. Ann Microbiol 65:15

    Article  Google Scholar 

  10. Berbegal C, Peña N, Russo P, Grieco F, Pardo I, Ferrer S, Spano G, Capozzi V (2016) Technological properties of Lactobacillus plantarum strains isolated from Apulia wines. Food Microbiol 57:187–194

    Article  CAS  Google Scholar 

  11. Wang J, Ji H, Zhang D, Liu H, Wang S, Shan D, Wang Y (2011) Assessment of probiotic properties of Lactobacillus plantarum ZLP001 isolated from gastrointestinal tract of weaning pigs. Afr J Biotechnol 10:11303–11308

    Article  CAS  Google Scholar 

  12. Jose NM, Bunt CR, Hussain MA (2015) Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 3:198–212

    Article  Google Scholar 

  13. Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94

    Article  CAS  Google Scholar 

  14. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY (2014) Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiol Immunol 58:492–502

    Article  CAS  Google Scholar 

  15. Al Kassaa I, Hamze M, Hober D, Chihib NE, Drider D (2014) Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon. Microb Ecol 67:722–734

    Article  Google Scholar 

  16. Fiocco D, Capozzi V, Gallone A, Hols P, Guzzo J, Weidmann S, Rieu A, Msadek T, Spano G (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 196:896–900

    Article  CAS  Google Scholar 

  17. Todorov SD, Franco BD (2010) Lactobacillus plantarum: characterization of the species and application in food production. Food Rev Int 26:205–229

    Article  CAS  Google Scholar 

  18. Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Grieco F, Spano G (2012) Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol 3:122

    Google Scholar 

  19. Kujawa-Szewieczek A, Adamczak M, Kwiecień K, Dudzicz S, Gazda M, Więcek A (2015) The effect of Lactobacillus plantarum 299v on the incidence of Clostridium difficile infection in high risk patients treated with antibiotics. Nutrients 7:10179–10188

    Article  Google Scholar 

  20. Ducrotté P, Sawant P, Jayanthi V (2012) Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome. World J Gastroentero 18:4012–4018

    Article  CAS  Google Scholar 

  21. Stevenson C, Blaauw R, Fredericks E, Visser J, Roux S (2014) Randomized clinical trial: effect of Lactobacillus Plantarum 299V on symptoms of irritable bowel syndrome. Nutrition 30:1151–1157

    Article  Google Scholar 

  22. Costa GN, Marcelino-Guimarães FC, Vilas-Bôas GT, Matsuo T, Miglioranza LHS (2014) Potential fate of ingested Lactobacillus plantarum and its occurrence in human feces. Appl Environ Microb 80(3):1013–1019

    Article  CAS  Google Scholar 

  23. Mukerji P, Roper JM, Stahl B et al (2016) Safety evaluation of AB-LIFE® (Lactobacillus plantarum CECT 7527, 7528 and 7529): antibiotic resistance and 90-day repeated-dose study in rats. Food Chem Toxicol 92:117–128

    Article  CAS  Google Scholar 

  24. Fuentes MC, Lajo T, Carrión JM, Cuñé J (2013) Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr 109:1866–1872

    Article  CAS  Google Scholar 

  25. Berggren A, Lazou-Ahrén I, Larsson N, Önning G (2011) Randomised, double-blind and placebo-controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur J Nutr 50(3):203–210

    Article  Google Scholar 

  26. Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A (2009) Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 104:437–443

    Article  CAS  Google Scholar 

  27. Bukowska H, Pieczul-Mróz J, Jastrzêbska M, Chelstowski K, Naruszewicz M (1998) Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol. Atherosclerosis 137:437–438

    Article  CAS  Google Scholar 

  28. Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255

    CAS  Google Scholar 

  29. Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G (2016) Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2016.04.027

    Google Scholar 

  30. FAO/WHO, Report on Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, 2001

  31. Mogensen G, Salminen S, O’Brien J, Ouwehand A et al (2002) Food microorganisms—health benefits, safety evaluation and strains with documented history of use in foods. Bulletin of the International Dairy Federation 377:4–19

    Google Scholar 

  32. Tsai CC, Leu SF, Huang QR, Chou LC, Huang CC (2014) Safety evaluation of multiple strains of Lactobacillus plantarum and Pediococcus pentosaceus in wistar rats based on the Ames test and a 28-day feeding study. Scientific World Journal. ID 928652

  33. Daniel C, Poiret S, Goudercourt D, Dennin V, Leyer G, Pot B (2006) Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model. Appl Environ Microb 72:5799–5805

    Article  CAS  Google Scholar 

  34. Iannaccone PM, Jacob HJ (2009) Rats! Disease Models and Mechanisms 2:206–210

    Article  Google Scholar 

  35. Adawi D, Molin G, Ahrné S, Jeppsson B (2002) Safety of the probiotic strain Lactobacillus plantarum DSM 9843 (strain 299v) in an endocarditis animal model. Microb Ecol Health D 14:50–53

    Article  Google Scholar 

  36. Ramiah K, Ten-Doeschate K, Smith R, Dicks T (2009) Safety assessment of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA determined in trials with wistar rats. Probiotics and Antimicrobial Proteins 1:15–23

    Article  CAS  Google Scholar 

  37. Songisepp E, Hütt P, Rätsep M, Shkut E, Kõljalg S, Truusalu K, Stsepetova J, Smidt I, Kolk H, Zagura M, Mikelsaar M (2012) Safety of a probiotic cheese containing Lactobacillus plantarum Tensia according to a variety of health indices in different age groups. J Dairy Sci 95:5495–5509

    Article  CAS  Google Scholar 

  38. Cannon JP, Lee TA, Bolanos JT, Danziger LH (2005) Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol 24:31–40

    Article  CAS  Google Scholar 

  39. Shinde PB (2012) Probiotic: an overview for selection and evaluation. International Journal of Pharmacology and Pharmaceutical Sciences 4:14–21

    Google Scholar 

  40. Asahara T, Takahashi M, Nomoto K, Takayama H, Onoue M, Morotomi M, Yamashita N (2003) Assessment of safety of Lactobacillus strains based on resistance to host innate defense mechanisms. Clin Diagn Lab Immun 10:169–173

    Google Scholar 

  41. Borriello SP, Hammes WP, Holzapfel W, Marteau P, Schrezenmeir J, Vaara M, Valtonen V (2003) Safety of probiotics that contain lactobacilli or bifidobacteria. Clin Infect Dis 36:775–780

    Article  CAS  Google Scholar 

  42. Salminen MK, Tynkkynen S, Rautelin H et al (2002) Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland. Clin Infect Dis 35:1155–1160

    Article  Google Scholar 

  43. Salvetti E, Orrù L, Capozzi V, Martina A, Lamontanara A, Keller D, Cash H, Felis GE, Cattivelli L, Torriani S, Spano G (2016) Integrate genome-baseD assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl Microbiol Biot 100:4595–4605

    Article  CAS  Google Scholar 

  44. Lee IC, Caggianiello G, van Swam II, Taverne N, Meijerink M, Bron PA, Spano G, Kleerebezem M (2016) Strain-specific features of extracellular polysaccharides and their impact on host interactions of Lactobacillus plantarum. Appl Environ Microb 82:3959–3970

    Article  CAS  Google Scholar 

  45. Wullt M, Hagslatt Johansson ML, Odenholt I (2003) Lactobacillus plantarum 299v for treatment of recurrent Clostridium difficile-associated diarrhea: a double-blind, placebo-controlled trial. Scand J Infect Dis 35:365–367

    Article  Google Scholar 

  46. Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y (2013) Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One 8(7):e69868

    Article  CAS  Google Scholar 

  47. Klarin B, Wullt M, Palmquist I, Molin G, Larsson A, Jeppsson B (2008) Lactobacillus plantarum 299v reduces colonization of Clostridium difficile in critically ill patients treated with antibiotics. Acta Anaesth Scand 52:1096–1102

    Article  CAS  Google Scholar 

  48. Niedzielin K (2001) A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur J Gastroen Hepat 13:1143–1147

    Article  CAS  Google Scholar 

  49. Nobaek S, Johansson ML, Molin G, Ahrne S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238

    Article  CAS  Google Scholar 

  50. Sen S, Mullan MM, Parker TJ, Woolner JT, Tarry SA, Hunter JO (2002) Effect of Lactobacillus plantarum 299v on colonic fermentation and symptoms of irritable bowel syndrome. Digest Dis Sci 47:2615–2620

    Article  CAS  Google Scholar 

  51. Kratz M, Cullen P, Wahrburg U (2002) The impact of dietary mono and poly-unsaturated fatty acids on risk factors for atherosclerosis in humans. Eur J Lipid Sci Tech 104:300–311

    Article  CAS  Google Scholar 

  52. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522

    Article  CAS  Google Scholar 

  53. Kumar R, Grover S, Batish VK (2011) Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats. Br J Nutr 105:561–573

    Article  CAS  Google Scholar 

  54. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microb 72:1729–1738

    Article  CAS  Google Scholar 

  55. Jeun J, Kim S, Cho SY, Jun HJ, Park HJ, Seo JG, Chung MJ, Lee SJ (2010) Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition 26:321–330

    Article  CAS  Google Scholar 

  56. Huang Y, Wang X, Wang J, Wu F, Sui Y, Yang L, Wang Z (2013) Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J Dairy Sci 96:2746–2753

    Article  CAS  Google Scholar 

  57. Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73:430–436

    Google Scholar 

  58. Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Therapeutic Advences in Gastroenterology 3:307–319

    Article  Google Scholar 

  59. Mangell P, Nejdfors P, Wang M, Ahrné S, Weström B, Thorlacius H, Jeppsson B (2002) Lactobacillus plantarum 299v inhibits Escherichia coli-induced intestinal permeability. Digest Dis Sci 47:511–516

    Article  Google Scholar 

  60. Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 92:1496–1503

    Article  CAS  Google Scholar 

  61. Lönnermark E, Friman V, Lappas G, Sandberg T, Berggren A, Adlerberth I (2010) Intake of Lactobacillus plantarum reduces certain gastrointestinal symptoms during treatment with antibiotics. J Clin Gastroenterol 44:106–112

    Article  Google Scholar 

  62. Szymański H, Armańska M, Kowalska-Duplaga K, Szajewska H (2008) Bifidobacterium longum PL03, Lactobacillus rhamnosus KL53A, and Lactobacillus plantarum PL02 in the prevention of antibiotic-associated diarrhea in children: a randomized controlled pilot trial. Digestion 78:13–17

    Article  Google Scholar 

  63. de Vrese M, Marteau PR (2007) Probiotics and prebiotics: effects on diarrhea. J Nutr 137:803S–811S

    Google Scholar 

  64. Jonkers D, Stockbrügger R (2003) Probiotics and inflammatory bowel disease. J Roy Soc Med 96:167–171

    Article  Google Scholar 

  65. Sheil B, Shanahan F, O’Mahony L (2007) Probiotic effects on inflammatory bowel disease. J Nutr 137:819S–824S

    CAS  Google Scholar 

  66. Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10:37–54

    CAS  Google Scholar 

  67. Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, Sartor RB (2002) Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 8:71–80

    Article  Google Scholar 

  68. Mao Y, Nobaek S, Kasravi B, Adawi D, Stenram U, Molin G, Jeppsson B (1996) The effects of Lactobacillus strains and oat fiber on methotrexate-induced enterocolitis in rats. Gastroenterology 111:334–344

    Article  CAS  Google Scholar 

  69. Kennedy RJ, Hoper M, Deodhar K, Kirk SJ, Gardiner KR (2000) Probiotic therapy fails to improve gut permeability in a hapten model of colitis. Scand J Gastroentero 35:1266–1271

    Article  CAS  Google Scholar 

  70. Chermesh I, Tamir A, Reshef R et al (2007) Failure of Synbiotic 2000 to prevent postoperative recurrence of Crohn’s disease. Digest Dis Sci 52:385–389

    Article  Google Scholar 

  71. Campieri M, Rizzello F, Venturi A, Poggioli G, Ugolini F, Helwig U, Amasini C, Romboli E, Gionchetti P (2000) Combination of antibiotic and probiotic treatment is efficacious in prophylaxis of post-operative recurrence of Crohn’s disease: a randomised controlled study vs mesalazine. Gastroenterology 118(4):A781

    Article  Google Scholar 

  72. Mikov M, Stojancevic MP, Bojic G (2014) Probiotics as a promising treatment for inflammatory bowel disease. Hospital Pharmacology 1:52–60

    Google Scholar 

  73. Dotan I, Rachmilewitz D (2015) Probiotics in inflammatory bowel disease: possible mechanisms of action. Curr Opin Gastroen 21:426–430

    Google Scholar 

  74. Canavan C, West J, Card T (2014) The epidemiology of irritable bowel syndrome. Clinical Epidemiology 6:71–80

    Google Scholar 

  75. Korpela R, Niittynen L (2012) Probiotics and irritable bowel syndrome. Microb Ecol Health D 23:18573

    Google Scholar 

  76. Dai C, Zheng CQ, Jiang M, Ma XY, Jiang LJ (2013) Probiotics and irritable bowel syndrome. World J Gastroentero 19:5973–5980

    Article  CAS  Google Scholar 

  77. Saggioro A (2004) Probiotics in the treatment of irritable bowel syndrome. J Clin Gastroenterol 38:S104–S106

    Article  Google Scholar 

  78. Lee BJ, Bak YT (2011) Irritable bowel syndrome, gut microbiota and probiotics. Journal of Neurogastroenterology and Motility 17:252–266

    Article  Google Scholar 

  79. Francavilla R, Miniello V, Magistà AM, De Canio A et al (2010) A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics 126:1445–1452

    Article  Google Scholar 

  80. Madsen KL (2012) Enhancement of epithelial barrier function by probiotics. Journal of Epithelial Biology and Pharmacology 5:55–59

    Article  CAS  Google Scholar 

  81. Lewis K, Lutgendorff F, Phan V, Soderholm JD, Sherman PM, McKay DM (2010) Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16:1138–1148

    Article  Google Scholar 

  82. Kleerebezem M, Boekhorst J, van Kranenburg R et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  CAS  Google Scholar 

  83. Douillard FP, de Vos WM (2014) Functional genomics of lactic acid bacteria: from food to health. Microb Cell Factories 13(Suppl 1):S8

    Article  Google Scholar 

  84. Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, van Hylckama Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773

    Article  CAS  Google Scholar 

  85. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127

    Article  CAS  Google Scholar 

  86. Maldonado-Barragán A, Caballero-Guerrero B, Lucena-Padrós H, Ruiz-Barba JL (2011) Genome sequence of Lactobacillus pentosus IG1, a strain isolated from Spanish-style green olive fermentations. J Bacteriol 193:5605

    Article  CAS  Google Scholar 

  87. Anukam KC, Emokpae AM (2014) Molecular characterization of fibronectin-binding protein of Lactobacillus pentosus and Lactobacillus plantarum strains. Journal of Medicine and Biomedical Research 13:27–33

    Google Scholar 

  88. Torriani S, Felis GE, Dellaglio F (2001) Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microb 67:3450–3454

    Article  CAS  Google Scholar 

  89. Wassenaar TM, Lukjancenko O (2014) Comparative genomics of Lactobacillus and other LAB. In: Holzapfel WH, Wood JB (eds) Lactic acid bacteria: biodiversity and taxonomy. Wiley, Chichester

    Google Scholar 

  90. Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G (2011) At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci U S A 108:4688–4695

    Article  CAS  Google Scholar 

  91. Mendes-Soares H, Suzuki H, Hickey RJ, Forney LJ (2014) Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 196:1458–1470

    Article  CAS  Google Scholar 

  92. Martino ME, Bayjanov JR, Caffrey BE et al (2016) Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 18:4974–4989

    Article  CAS  Google Scholar 

  93. Arena MP, Silvain A, Normanno G, Grieco F, Drider D, Spano G, Fiocco D (2016) Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol 7:464

    Article  Google Scholar 

  94. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. Springer, New York

    Book  Google Scholar 

  95. Todorov SD (2009) Bacteriocins from Lactobacillus plantarum: production, genetic organization and mode of action. Braz J Microbiol 40:209–221

    Article  CAS  Google Scholar 

  96. Diep DB, Straume D, Kjos M, Torres C, Nes IF (2009) An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30:1562–1574

    Article  CAS  Google Scholar 

  97. Turner DL, Brennan L, Meyer HE et al (1999) Solution structure of plantaricin C, a novel lantibiotic. Eur J Biochem 264:833–839

    Article  CAS  Google Scholar 

  98. Zhang H, Liu L, Hao Y, Zhong S, Liu H, Han T, Xie Y (2013) Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product. Microbiol Immunol 57:746–755

    Article  CAS  Google Scholar 

  99. Todorov SD, Holzapfel W, Nero LA (2016) Characterization of a novel bacteriocin produced by Lactobacillus plantarum ST8SH and some aspects of its mode of action. Ann Microbiol 66:949–962

    Article  CAS  Google Scholar 

  100. Jimenez-Diaz R, Ruiz-Barba JL, Cathcart DP et al (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microb 61:4459–4463

    CAS  Google Scholar 

  101. Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin a. Appl Environ Microb 64:2269–2272

    CAS  Google Scholar 

  102. Daeschel MA, McKenney MC, McDonald LC (1990) Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol 7:91–98

    Article  CAS  Google Scholar 

  103. Messi P, Bondi M, Sabia C, Rod B, Manicardi G (2001) Detection and preliminary characterization of a bacteriocin (plantaricin 35d) produced by a Lactobacillus plantarum strain. Int J Food Microbiol 64:193–198

    Article  CAS  Google Scholar 

  104. Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    Article  CAS  Google Scholar 

  105. Chen YS, Wang YC, Chow YS, Yanagida F, Liao CC, Chiu CM (2014) Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510. Arch Microbiol 196:193–199

    Article  CAS  Google Scholar 

  106. Song DF, Zhu MY, Gu Q (2014) Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5. PLoS One 9:e105549

    Article  CAS  Google Scholar 

  107. Hu M, Zhao H, Zhang C, Yu J, Lu Z (2013) Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus Plantarum 163 isolated from traditional Chinese fermented vegetables. J Agr Food Chem 61:11676–11682

    Article  CAS  Google Scholar 

  108. Zhao S, Han J, Bie X, Lu Z, Zhang C, Lv F (2016) Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. J Agr Food Chem 64:2754–2764

    Article  CAS  Google Scholar 

  109. Todorov SD, Dicks LMT (2005) Lactobacillus plantarum isolated from molasses produces bacteriocins active against gram-negative bacteria. Enzyme Microb Tech 36:318–326

    Article  CAS  Google Scholar 

  110. Atrih A, Rekhif N, Moir A, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104

    Article  CAS  Google Scholar 

  111. Reenen V (1998) Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 84:1131–1137

    Article  Google Scholar 

  112. Parada JL, Caron CR, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Techn 50:512–542

    Article  Google Scholar 

  113. Valenzuela AS, Ruiz GD, Omar NB, Abriouel H, López RL, Canãmero MM, Ortega E, Gálvez A (2008) Inhibition of food poisoning and pathogenic bacteria by Lactobacillus plantarum strain 2.9 isolated from ben saalga, both in a culture medium and in food. Food Control 19:842–848

    Article  CAS  Google Scholar 

  114. Todorov SD, Koep KSC, Van Reenen CA, Hoffman LC, Slinde E, Dicks LMT (2007) Production of salami from beef, horse, mutton, blesbok (Damaliscus dorcas phillipsi) andspringbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Sci 77:405–412

    Article  CAS  Google Scholar 

  115. Gupta R, Srivastava S (2014) Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol 42:1–7

    Article  CAS  Google Scholar 

  116. Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Ström KL (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45:309–318

    Article  CAS  Google Scholar 

  117. Zhang N, Liu J, Li J, Chen C, Zhang H, Wang H, Lu F (2016) Characteristics and application in food preservatives of Lactobacillus plantarum tk9 isolated from naturally fermented congee. Int J Food Eng 12:377–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Drider.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seddik, H.A., Bendali, F., Gancel, F. et al. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics & Antimicro. Prot. 9, 111–122 (2017). https://doi.org/10.1007/s12602-017-9264-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9264-z

Keywords

Navigation