Skip to main content
Log in

Bacteriocinogenic Potential of Enterococcus faecium Isolated from Wine

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

A total of 145 lactic acid bacteria isolated from a variety of Turkish red wines during malolactic fermentation were screened to find bacteriocin-producing strains. Among them, 14 isolates of Enterococcus faecium were identified to produce bacteriocins. PCR screening revealed that some isolates harbored entA and entB genes while some harbored entA, entB and entP genes. An isolate designated as Ent. faecium H46 was selected to characterize its bacteriocins. The bacteriocins were purified to homogeneity from culture supernatant by Amberlite XAD-16, cation-exchange and reverse-phase chromatography. MALDI-TOF mass spectrometry analysis identified the bacteriocins as enterocin A and enterocin B. The presence of Ent. faecium is noteworthy since it is not associated with wine fermentation. However, it has been reported as an important wine spoilage organism due to its potential to produce tyramine. Although species of Enterococcus is not known as wine bacteria, contamination by Ent. faecium may arise from grapes or wineries equipments used for wine production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    CAS  Google Scholar 

  2. Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13(Suppl 1):S3

    Article  Google Scholar 

  3. Radler F (1990) Possible use of nisin in winemaking. I. Action of nisin against lactic acid bacteria and wine yeasts in solid and liquid media. Am J Enol Vitic 41:1–6

    CAS  Google Scholar 

  4. Yurdugül S, Bozoğlu F (2002) Studies on an inhibitor produced by LAB of wines on the control of malolactic fermentation. Eur Food Res Technol 215:38–41

    Article  Google Scholar 

  5. Bauer R, Nel HA, Dicks LMT (2003) Pediocin PD-1 as a method to control growth of Oenococcus oeni in wine. Am J Enol Vitic 54:86–91

    CAS  Google Scholar 

  6. Rojo-Bezares B, Sáenz Y, Zarazaga M, Torres C, Ruiz-Larrea F (2007) Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int J Food Microbiol 116:32–36

    Article  CAS  Google Scholar 

  7. Díez L, Rojo-Bezares B, Zarazaga M, Rodríguez JM, Torres C, Ruiz-Larrea F (2012) Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol 31:167–172

    Article  Google Scholar 

  8. Navarro L, Zarazaga M, Saenz JS, Ruiz-Larrea F, Torres C (2000) Bacteriocin production by lactic acid bacteria isolated from Rioja red wines. J Appl Microbiol 88:44–51

    Article  CAS  Google Scholar 

  9. Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF (2001) PlantaricinW from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147:643–651

    Article  CAS  Google Scholar 

  10. Strasser de Saad AM, Manca de Nadra MC (1993) Characterization of bacteriocin produced by Pediococcus pentosaceus from wine. J Appl Bacteriol 74:406–410

    Article  CAS  Google Scholar 

  11. Ndlovu B, Schoeman H, Franz CM, du Toit M (2015) Screening, identification and characterization of bacteriocins produced by wine-isolated LAB strains. J Appl Microbiol 118:1007–1022

    Article  CAS  Google Scholar 

  12. Van Vuuren HJJ, Dicks LMT (1993) Leuconostoc oenos: a review. Am J Enol Vitic 44:99–112

    Google Scholar 

  13. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331

    Article  CAS  Google Scholar 

  14. Marcobal A, de las Rivas B, García-Moruno E, Muñoz R (2004) The tyrosine decarboxylation test does not differentiate Enterococcus faecalis from Enterococcus faecium. Syst Appl Microbiol 27:423–426

    Article  CAS  Google Scholar 

  15. Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11:316–327

    Article  Google Scholar 

  16. Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  CAS  Google Scholar 

  17. Capozzi V, Ladero V, Beneduce L, Fernández M, Alvarez MA, Benoit B, Laurent B, Grieco F, Spano G (2011) Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol 28:434–439

    Article  CAS  Google Scholar 

  18. Kačániová M, Hleba L, Pochop J, Kádasi-Horáková M, Fikselová M, Rovná K (2012) Determination of wine microbiota using classical method, polymerase chain method and Step One Real-Time PCR during fermentation process. J Environ Sci Health B 47:571–578

    Article  Google Scholar 

  19. Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rRNA analysis of a mixed-culture of obligately barophilic bacteria. Microb Ecol 21:188–201

    Article  Google Scholar 

  20. Shigematsu T, Hayashi M, Kikuchi I, Ueno S, Masaki H, Fujii T (2009) A culture-dependent bacterial community structure analysis based on liquid cultivation and its application to a marine environment. FEMS Microbiol Lett 293:240–247

    Article  CAS  Google Scholar 

  21. Lee HJ, Joo CS, Park SH et al (1999) Purification and characterization of a bacteriocin produced by Lactococcus lactis subsp. lactis H-559 isolated from kimchi. J Biosci Bioeng 88:153–159

    Article  CAS  Google Scholar 

  22. Batdorj B, Dalgalarrondo M, Choiset Y, Pedroche J, Métro F, Prévost H, Chobert JM, Haertlé T (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol 101:837–848

    Article  CAS  Google Scholar 

  23. Du Toit M, Franz C, Dicks LMT, Holzapfel WH (2000) Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J Appl Microbiol 88:482–494

    Article  Google Scholar 

  24. De Vuyst L, Foulquie Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84:299–318

    Article  Google Scholar 

  25. Booth MC, Bogie CP, Sahl HG, Siezen RL, Hatter KL, Gilmore MS (1996) Structural analysis and proteolytic activation of Enterococcus faecalis cytolysin, a novel lantibiotic. Mol Microbiol 21:1175–1184

    Article  CAS  Google Scholar 

  26. Shin MS, Han SK, Ji AR, Kim KS, Lee WK (2008) Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J Appl Microbiol 105:2203–2212

    Article  CAS  Google Scholar 

  27. Bhunia AK, Johnson MC, Ray B (1988) Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J Appl Bacteriol 65:261–268

    Article  CAS  Google Scholar 

  28. Dündar H, Atakay M, Çelikbıçak Ö, Salih B, Bozoglu F (2015) Comparison of two methods for purification enterocin B produced by Enterococcus faecium W3. Prep Biochem Biotechnol 45:796–809

    Article  Google Scholar 

  29. Aymerich T, Holo H, Håvarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682

    CAS  Google Scholar 

  30. Floriano B, Ruiz-Barba JL, Jiménez-Díaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890

    CAS  Google Scholar 

  31. Cintas LM, Casaus P, Herranz C, Håvarstein LS, Holo H, Hernández PE, Nes IF (2000) Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 182:6806–6814

    Article  CAS  Google Scholar 

  32. De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LMT (2005) Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int J Food Microbiol 105:433–444

    Article  Google Scholar 

  33. Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K (2005) Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J Appl Microbiol 99:1181–1190

    Article  CAS  Google Scholar 

  34. Hu CB, Zendo T, Nakayama J, Sonomoto K (2008) Description of durancin TW-49 M, a novel enterocin B-homologous bacteriocin in carrot-isolated Enterococcus durans QU 49. J Appl Microbiol 105:681–690

    Article  CAS  Google Scholar 

  35. Ishibashi N, Himeno K, Fujita K, Masuda Y, Perez RH, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Biosci Biotechnol Biochem 76:947–953

    Article  CAS  Google Scholar 

  36. Gaaloul N, ben Braiek O, Hani K, Volski A (2014) Isolation and characterization of large spectrum and multiple bacteriocin-producing Enterococcus faecium strain from raw bovine milk. J Appl Microbiol 118:343–355

    Article  Google Scholar 

  37. Strompfova V, Laukova A, Simonova M, Marcinakova M (2008) Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin. Vet Microbiol 132:293–301

    Article  CAS  Google Scholar 

  38. Aguilar-Galvez A, Dubois-Dauphin R, Campos D, Thonart P (2011) Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431. Food Sci Biotechnol 20:289–296

    Article  CAS  Google Scholar 

  39. Hu CB, Malaphan W, Zendo T, Nakayama J, Sonomoto K (2010) Enterocin X, a novel two-peptide bacteriocin from Enterococcus faecium KU-B5, has an antibacterial spectrum entirely different from those of its component peptides. Appl Environ Microbiol 76:4542–4545

    Article  CAS  Google Scholar 

  40. Van Belkum MJ, Kok K, Venema G, Holo H, Nes IF, Konings WN, Abee T (1991) The bacteriocin lactococcin A specifically increases the permeability of lactococcal cytoplasme membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941

    Google Scholar 

  41. Georgalaki MD, Van den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, De Vuyst L, Tsakalidou E (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACADC 198. Appl Environ Microbiol 68:5891–5903

    Article  CAS  Google Scholar 

  42. Moreno MRF, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation abd biochemical characterization of enterocins produced by enterococci from different sources. J Appl Microbiol 94:214–229

    Article  Google Scholar 

  43. Nes IF, Diep DB, Ike Y (2014) Enterococcal bacteriocins and antimicrobial proteins that contribute to niche control. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection [Internet]. Massachusetts Eye and Ear Infirmary, Boston

    Google Scholar 

  44. Walling E, Gindreau E, Lonvaud-Funel A (2005) A putative glucan synthase gene dps producing Pediococcus damnosus and Oenococcus oeni strains isolated from wine and cider. Int J Food Microbiol 98:53–62

    Article  CAS  Google Scholar 

  45. Casaus P, Nilsen T, Cintas LM, Nes IF, Hernández PE, Holo H (1997) Enterocin B, a new bacteriocin from Enterococcus faecium TI36 which can act synergistically with enterocin A. Microbiology 143:2287–2294

    Article  CAS  Google Scholar 

  46. Rehaiem A, Martίnez B, Manai M, Rodrίguez A (2010) Production of enterocin A by Enterococcus faecium MMRA isolated from ‘Rayeb’, a traditional Tunisian dairy beverage. J Appl Microbiol 108:1685–1693

    Article  CAS  Google Scholar 

  47. Schoeman H, Vivier MA, Du Toit M, Dicks LMT, Pretorius IS (1999) The development of bacterial yeast strains by expressing the Pediococcus acidilactici pediocin gene (pedA) in Saccharomyces cerevisiae. Yeast 15:647–656

    Article  CAS  Google Scholar 

  48. Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2002) Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40

    Article  Google Scholar 

  49. Martínez JM, Kok J, Sanders JW, Hernández PE (2000) Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies. Appl Environ Microbiol 66:3543–3549

    Article  Google Scholar 

  50. Jiménez JJ, Borrero J, Gútiez L, Arbulu S, Herranz C, Cintas LM, Hernández PE (2014) Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50–52 by Pichia pastoris and Kluyveromyces lactis. Mol Biotechnol 56:571–583

    Article  Google Scholar 

  51. Tominaga T, Hatakeyama Y (2007) Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol 73:5292–5299

    Article  CAS  Google Scholar 

  52. Aymerich MT, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Prot 63:721–726

    CAS  Google Scholar 

  53. Aymerich MT, Garriga M, Costa S, Monfort JM, Hugas M (2002) Prevention of ropiness in cooked pork by bacteriocinogenic cultures. Int Dairy J 12:239–246

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Mass Spectrometry Laboratory of Hacettepe University Department of Chemistry (Ankara, Turkey) for the collection of mass spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Dündar.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dündar, H. Bacteriocinogenic Potential of Enterococcus faecium Isolated from Wine. Probiotics & Antimicro. Prot. 8, 150–160 (2016). https://doi.org/10.1007/s12602-016-9222-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-016-9222-1

Keywords

Navigation