Skip to main content

Advertisement

Log in

Membrane-Active Peptides from Marine Organisms—Antimicrobials, Cell-Penetrating Peptides and Peptide Toxins: Applications and Prospects

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino–alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jha RK, Zi-rong X (2004) Biomedical compounds from marine organisms. Mar Drugs 2:123–146. doi:10.3390/md203123

    CAS  Google Scholar 

  2. Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr, B: Anal Technol Biomed Life Sci 803:41–53. doi:10.1016/j.jchromb.2003.11.005

    CAS  Google Scholar 

  3. Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    CAS  Google Scholar 

  4. Simmons TL, Andrianasolo E, McPhail K et al (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    CAS  Google Scholar 

  5. Galdiero S, Falanga A, Cantisani M et al (2013) Peptide-lipid interactions: experiments and applications. Int J Mol Sci 14:18758–18789. doi:10.3390/ijms140918758

    CAS  Google Scholar 

  6. Wang Q, Hong G, Johnson GR et al (2010) Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides. J Phys Chem B 114:13726–13735. doi:10.1021/jp1069362

    CAS  Google Scholar 

  7. Wadhwani P, Reichert J, Bürck J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41:177–187. doi:10.1007/s00249-011-0771-7

    CAS  Google Scholar 

  8. Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48:3645–3654. doi:10.1128/AAC.48.10.3645-3654.2004

    CAS  Google Scholar 

  9. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206. doi:10.1111/j.1476-5381.2009.00057.x

    CAS  Google Scholar 

  10. Matsuzaki K, Yoneyama S, Murase O, Miyajima K (1996) Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry 35:8450–8456. doi:10.1021/bi960342a

    CAS  Google Scholar 

  11. Kerkis A, Kerkis I, Rádis-Baptista G et al (2004) Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J 18:1407–1409. doi:10.1096/fj.03-1459fje

    CAS  Google Scholar 

  12. Estève E, Mabrouk K, Dupuis A et al (2005) Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J Biol Chem 280:12833–12839. doi:10.1074/jbc.M412521200

    Google Scholar 

  13. Gurrola GB, Capes EM, Zamudio FZ et al (2010) Imperatoxin A, a cell-penetrating peptide from scorpion venom, as a probe of Ca-release channels/ryanodine receptors. Pharmaceuticals (Basel) 3:1093–1107. doi:10.3390/ph3041093

    CAS  Google Scholar 

  14. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  Google Scholar 

  15. Drider D, Rebuffat S (2011) Prokaryotic antimicrobial peptides: from genes to applications. doi:10.1007/978-1-4419-7692-5

  16. Goldman MJ, Anderson GM, Stolzenberg ED et al (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    CAS  Google Scholar 

  17. Hancock RE, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97:8856–8861

    CAS  Google Scholar 

  18. Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections? Trends Parasitol 18:475–476

    CAS  Google Scholar 

  19. Baltzer SA, Brown MH (2011) Antimicrobial peptides: promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20:228–235. doi:10.1159/000331009

    CAS  Google Scholar 

  20. Allsopp M, Pambuccian SE, Johnston P, Santillo D (2009) State of the world’s oceans

  21. Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933–D937. doi:10.1093/nar/gkn823

    CAS  Google Scholar 

  22. Ammerman JW, Fuhrman JA, Hagstrom A, Azam F (1984) Bacterioplankton growth in seawater: I. Growth kinetics and cellular characteristics in seawater cultures. Mar Ecol Prog Ser 18:31–39

    Google Scholar 

  23. Patrzykat A, Douglas SE (2003) Gone gene fishing: how to catch novel marine antimicrobials. Trends Biotechnol 21:362–369. doi:10.1016/S0167-7799(03)00145-8

    CAS  Google Scholar 

  24. Otero-González AJ, Magalhães BS, Garcia-Villarino M et al (2010) Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J 24:1320–1334. doi:10.1096/fj.09-143388

    Google Scholar 

  25. Smith VJ, Desbois AP, Dyrynda EA (2010) Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 8:1213–1262. doi:10.3390/md8041213

    CAS  Google Scholar 

  26. Sperstad SV, Haug T, Blencke H-M et al (2011) Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 29:519–530. doi:10.1016/j.biotechadv.2011.05.021

    CAS  Google Scholar 

  27. Wang G (2012) Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol 1:72–79

    CAS  Google Scholar 

  28. Shinnar AE, Butler KL, Park HJ (2003) Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg Chem 31:425–436. doi:10.1016/S0045-2068(03)00080-4

    CAS  Google Scholar 

  29. Li C, Haug T, Styrvold OB et al (2008) Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol 32:1430–1440. doi:10.1016/j.dci.2008.06.013

    CAS  Google Scholar 

  30. Lee IH, Cho Y, Lehrer RI (1997) Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, Styela clava. Comp Biochem Physiol B: Biochem Mol Biol 118:515–521

    CAS  Google Scholar 

  31. Taylor SW, Craig AG, Fischer WH et al (2000) Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J Biol Chem 275:38417–38426. doi:10.1074/jbc.M006762200

    CAS  Google Scholar 

  32. Zabriskie TM, Klocke JA, Ireland CM et al (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124. doi:10.1021/ja00271a062

    CAS  Google Scholar 

  33. Fedders H, Michalek M, Grötzinger J, Leippe M (2008) An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem J 416:65–75. doi:10.1042/BJ20080398

    CAS  Google Scholar 

  34. Andrès E, Dimarcq JL (2004) Cationic antimicrobial peptides: update of clinical development. J Intern Med 255:519–520. doi:10.1046/j.1365-2796.2003.01278.x

    Google Scholar 

  35. Ge Y, MacDonald DL, Holroyd KJ et al (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788

    CAS  Google Scholar 

  36. Lamb HM, Wiseman LR (1998) Pexiganan acetate. Drugs 56:1047–1052 (discussion 1053–4)

    CAS  Google Scholar 

  37. Trotti A, Garden A, Warde P et al (2004) A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy. Int J Radiat Oncol Biol Phys 58:674–681. doi:10.1016/S0360-3016(03)01627-4

    CAS  Google Scholar 

  38. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472. doi:10.1016/j.coph.2006.04.006

    CAS  Google Scholar 

  39. Domingues MM, Santos NC, Castanho MARB (2012) Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies. Curr Protein Pept Sci 13:611–619

    CAS  Google Scholar 

  40. Naghmouchi K, Baah J, Hober D et al (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob Agents Chemother 57:2719–2725. doi:10.1128/AAC.02328-12

    CAS  Google Scholar 

  41. Naghmouchi K, Drider D, Baah J, Teather R (2010) Nisin A and polymyxin B as synergistic inhibitors of Gram-positive and Gram-negative bacteria. Probiot Antimicrob Proteins 2:98–103. doi:10.1007/s12602-009-9033-8

    CAS  Google Scholar 

  42. Moulton HM (2013) In vivo delivery of morpholino oligos by cell-penetrating peptides. Curr Pharm Des 19:2963–2969

    CAS  Google Scholar 

  43. Erazo-Oliveras A, Najjar K, Dayani L et al (2014) Protein delivery into live cells by incubation with an endosomolytic agent. Nat Methods 11:861–867. doi:10.1038/nmeth.2998

    CAS  Google Scholar 

  44. Chen Z, Zhang P, Cheetham AG et al (2014) Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. J Control Release 191:123–130. doi:10.1016/j.jconrel.2014.05.051

    CAS  Google Scholar 

  45. Hearst SM, Shao Q, Lopez M et al (2014) The design and delivery of a PKA inhibitory polypeptide to treat SCA1. J Neurochem. doi:10.1111/jnc.12782

    Google Scholar 

  46. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    CAS  Google Scholar 

  47. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88:1864–1868

    CAS  Google Scholar 

  48. Elmquist A, Lindgren M, Bartfai T, Langel U (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269:237–244. doi:10.1006/excr.2001.5316

    CAS  Google Scholar 

  49. Tunnemann G, Ter-Avetisyan G, Martin RM et al (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14:469–476. doi:10.1002/psc

    Google Scholar 

  50. Oehlke J, Scheller A, Wiesner B et al (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139

    CAS  Google Scholar 

  51. Walrant A, Matheron L, Cribier S et al (2013) Direct translocation of cell-penetrating peptides in liposomes: a combined mass spectrometry quantification and fluorescence detection study. Anal Biochem 438:1–10. doi:10.1016/j.ab.2013.03.009

    CAS  Google Scholar 

  52. Eguchi A, Akuta T, Okuyama H et al (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276:26204–26210. doi:10.1074/jbc.M010625200

    CAS  Google Scholar 

  53. Chugh A, Amundsen E, Eudes F (2009) Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Rep 28:801–810. doi:10.1007/s00299-009-0692-4

    CAS  Google Scholar 

  54. Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J 40:387–397. doi:10.1007/s00249-011-0682-7

    CAS  Google Scholar 

  55. Nekhotiaeva N, Elmquist A, Rajarao GK et al (2004) Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J 18:394–396. doi:10.1096/fj.03-0449fje

    CAS  Google Scholar 

  56. Palm C, Netzereab S, Hällbrink M (2006) Quantitatively determined uptake of cell-penetrating peptides in non-mammalian cells with an evaluation of degradation and antimicrobial effects. Peptides 27:1710–1716. doi:10.1016/j.peptides.2006.01.006

    CAS  Google Scholar 

  57. Zhu WL, Shin SY (2009) Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15:345–352. doi:10.1002/psc.1120

    CAS  Google Scholar 

  58. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257. doi:10.1006/bbrc.1998.8159

    CAS  Google Scholar 

  59. Takeshima K, Chikushi A, Lee K-K et al (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278:1310–1315. doi:10.1074/jbc.M208762200

    CAS  Google Scholar 

  60. Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PLoS ONE 8:e69316. doi:10.1371/journal.pone.0069316

    CAS  Google Scholar 

  61. Fusetani N, Kem W (2009) Marine toxins: an overview. Prog Mol Subcell Biol 46:1–44. doi:10.1007/978-3-540-87895-7_1

    CAS  Google Scholar 

  62. Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142. doi:10.1016/j.pbiomolbio.2004.01.009

    CAS  Google Scholar 

  63. Oren Z, Shai Y (1996) A class of highly potent antibacterial peptides derived from pardaxin, a pore-forming peptide isolated from Moses sole fish Pardachirus marmoratus. Eur J Biochem 237:303–310

    CAS  Google Scholar 

  64. Fedorov S, Dyshlovoy S, Monastyrnaya M et al (2010) The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (= Radianthus macrodactylus). Toxicon 55:811–817. doi:10.1016/j.toxicon.2009.11.016

    CAS  Google Scholar 

  65. Tejuca M, Anderluh G, Macek P et al (1999) Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. Int J Parasitol 29:489–498

    CAS  Google Scholar 

  66. Anderluh G, Macek P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124

    CAS  Google Scholar 

  67. Anderluh G, Pungercar J, Strukelj B et al (1996) Cloning, sequencing, and expression of equinatoxin II. Biochem Biophys Res Commun 220:437–442. doi:10.1006/bbrc.1996.0391

    CAS  Google Scholar 

  68. Anderluh G, Barlic A, Podlesek Z et al (1999) Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone: topology in lipid membranes. Eur J Biochem 263:128–136

    CAS  Google Scholar 

  69. Lanio ME, Morera V, Alvarez C et al (2001) Purification and characterization of two hemolysins from Stichodactyla helianthus. Toxicon 39:187–194

    CAS  Google Scholar 

  70. Wang Y, Chua KL, Khoo HE (2000) A new cytolysin from the sea anemone, Heteractis magnifica: isolation, cDNA cloning and functional expression. Biochim Biophys Acta 1478:9–18

    CAS  Google Scholar 

  71. Terwilliger TC, Eisenberg D (1982) The structure of melittin. II. Interpretation of the structure. J Biol Chem 257:6016–6022

    CAS  Google Scholar 

  72. Steiner H (1982) Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett 137:283–287

    CAS  Google Scholar 

  73. Hinds MG, Zhang W, Anderluh G et al (2002) Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 315:1219–1229. doi:10.1006/jmbi.2001.5321

    CAS  Google Scholar 

  74. Jackson KE, Spielmann T, Hanssen E et al (2007) Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. Biochem J 403:167–175. doi:10.1042/BJ20061725

    CAS  Google Scholar 

  75. Zhang M, Fishman Y, Sher D, Zlotkin E (2003) Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in hydra. Biochemistry 42:8939–8944. doi:10.1021/bi0343929

    CAS  Google Scholar 

  76. Sher D, Zlotkin E (2009) A hydra with many heads: protein and polypeptide toxins from hydra and their biological roles. Toxicon 54:1148–1161. doi:10.1016/j.toxicon.2009.02.036

    CAS  Google Scholar 

  77. Sher D, Fishman Y, Zhang M et al (2005) Hydralysins, a new category of beta-pore-forming toxins in cnidaria. J Biol Chem 280:22847–22855. doi:10.1074/jbc.M503242200

    CAS  Google Scholar 

  78. Lazarovici P, Primor N, Loew LM (1986) Purification and pore-forming activity of two hydrophobic polypeptides from the secretion of the Red Sea Moses sole (Pardachirus marmoratus). J Biol Chem 261:16704–16713

    CAS  Google Scholar 

  79. Shai Y, Bach D, Yanovsky A (1990) Channel formation properties of synthetic pardaxin and analogues. J Biol Chem 265:20202–20209

    CAS  Google Scholar 

  80. Hallock KJ, Lee D-K, Omnaas J et al (2002) Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 83:1004–1013. doi:10.1016/S0006-3495(02)75226-0

    CAS  Google Scholar 

  81. Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758:1499–1512. doi:10.1016/j.bbamem.2006.07.007

    CAS  Google Scholar 

  82. Blumenthal KM (1982) Structure and action of heteronemertine polypeptide toxins. Membrane penetration by Cerebratulus lacteus toxin A-III. Biochemistry 21:4229–4233

    CAS  Google Scholar 

  83. Kem WR (1994) Structure and membrane actions of a marine worm protein cytolysin, Cerebratulus toxin A-III. Toxicology 87:189–203

    CAS  Google Scholar 

  84. Lehrer RI, Lee IH, Menzel L et al (2001) Clavanins and styelins, alpha-helical antimicrobial peptides from the hemocytes of Styela clava. Adv Exp Med Biol 484:71–76

    CAS  Google Scholar 

  85. Pundir P, Catalli A, Leggiadro C et al (2014) Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol 7:177–187. doi:10.1038/mi.2013.37

    CAS  Google Scholar 

  86. Lee S-A, Kim YK, Lim SS et al (2007) Solution structure and cell selectivity of piscidin 1 and its analogues. Biochemistry 46:3653–3663. doi:10.1021/bi062233u

    CAS  Google Scholar 

  87. Pushpanathan M, Rajendhran J, Jayashree S et al (2012) Identification of a novel antifungal peptide with chitin-binding property from marine metagenome. Protein Pept Lett 19:1289–1296

    CAS  Google Scholar 

  88. Kolusheva S, Lecht S, Derazon Y et al (2008) Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides 29:1620–1625. doi:10.1016/j.peptides.2008.05.012

    CAS  Google Scholar 

  89. Bringezu F, Wen S, Dante S et al (2007) The insertion of the antimicrobial peptide dicynthaurin monomer in model membranes: thermodynamics and structural characterization. Biochemistry 46:5678–5686. doi:10.1021/bi7001295

    CAS  Google Scholar 

  90. Jang WS, Kim KN, Lee YS et al (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett 521:81–86

    CAS  Google Scholar 

  91. Cespedes GF, Lorenzón EN, Vicente EF et al (2012) Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept Lett 19:596–603

    CAS  Google Scholar 

  92. Stensvåg K, Haug T, Sperstad SV et al (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285. doi:10.1016/j.dci.2007.06.002

    Google Scholar 

  93. Sperstad SV, Haug T, Vasskog T, Stensvåg K (2009) Hyastatin, a glycine-rich multi-domain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. Mol Immunol 46:2604–2612. doi:10.1016/j.molimm.2009.05.002

    CAS  Google Scholar 

  94. Yang Y, Poncet J, Garnier J et al (2003) Solution structure of the recombinant penaeidin-3, a shrimp antimicrobial peptide. J Biol Chem 278:36859–36867. doi:10.1074/jbc.M305450200

    CAS  Google Scholar 

  95. Roch P, Yang Y, Toubiana M, Aumelas A (2008) NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev Comp Immunol 32:227–238. doi:10.1016/j.dci.2007.05.006

    CAS  Google Scholar 

  96. Bakrac B, Gutiérrez-Aguirre I, Podlesek Z et al (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283:18665–18677. doi:10.1074/jbc.M708747200

    CAS  Google Scholar 

  97. Mancheño JM, Martín-Benito J, Martínez-Ripoll M et al (2003) Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11:1319–1328. doi:10.1016/j.str.2003.09.019

    Google Scholar 

  98. Athanasiadis A, Anderluh G, Maček P, Turk D (2001) Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9:341–346. doi:10.1016/S0969-2126(01)00592-5

    CAS  Google Scholar 

  99. Hong Q, Gutierrez-Aguirre I, Barlic A et al (2002) Two-step membrane binding by equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. Biochemistry 277:41916–41924. doi:10.1074/jbc.M204625200

    CAS  Google Scholar 

  100. Alegre-Cebollada J, Cunietti M, Herrero-Galán E et al (2008) Calorimetric scrutiny of lipid binding by sticholysin II toxin mutants. J Mol Biol 382:920–930. doi:10.1016/j.jmb.2008.07.053

    CAS  Google Scholar 

  101. Malovrh P, Viero G, Serra MD et al (2003) A novel mechanism of pore formation: membrane penetration by the N-terminal amphipathic region of equinatoxin. J Biol Chem 278:22678–22685. doi:10.1074/jbc.M300622200

    CAS  Google Scholar 

  102. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248. doi:10.1002/bip.10260

    CAS  Google Scholar 

  103. La Rocca P, Biggin PC, Tieleman DP, Sansom MS (1999) Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta 1462:185–200

    Google Scholar 

  104. Gazit E, Lee WJ, Brey PT, Shai Y (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681–10692

    CAS  Google Scholar 

  105. Stark M, Liu L-P, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46:3585–3590

    CAS  Google Scholar 

  106. Shai Y, Oren Z (2001) From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22:1629–1641

    CAS  Google Scholar 

  107. Gidalevitz D, Ishitsuka Y, Muresan AS et al (2003) Interaction of antimicrobial peptide protegrin with biomembranes. Proc Natl Acad Sci USA 100:6302–6307. doi:10.1073/pnas.0934731100

    CAS  Google Scholar 

  108. Yang L, Harroun TA, Weiss TM et al (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485. doi:10.1016/S0006-3495(01)75802-X

    Google Scholar 

  109. Spaar A, Münster C, Salditt T (2004) Conformation of peptides in lipid membranes studied by X-ray grazing incidence scattering. Biophys J 87:396–407. doi:10.1529/biophysj.104.040667

    CAS  Google Scholar 

  110. Murzyn K, Pasenkiewicz-Gierula M (2003) Construction of a toroidal model for the magainin pore. J Mol Model 9:217–224. doi:10.1007/s00894-003-0127-z

    CAS  Google Scholar 

  111. Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758:1292–1302. doi:10.1016/j.bbamem.2006.02.001

    CAS  Google Scholar 

  112. Anderluh G, Dalla Serra M, Viero G et al (2003) Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 278:45216–45223. doi:10.1074/jbc.M305916200

    CAS  Google Scholar 

  113. Alvarez C, Mancheño JM, Martínez D et al (2009) Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes. Toxicon 54:1135–1147. doi:10.1016/j.toxicon.2009.02.022

    CAS  Google Scholar 

  114. Park CB, Lee JH, Park IY et al (1997) A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett 411:173–178

    CAS  Google Scholar 

  115. Jung HJ, Park Y, Sung WS et al (2007) Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. Biochim Biophys Acta 1768:1400–1405. doi:10.1016/j.bbamem.2007.02.024

    CAS  Google Scholar 

  116. Lauth X, Shike H, Burns JC et al (2002) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem 277:5030–5039. doi:10.1074/jbc.M109173200

    CAS  Google Scholar 

  117. Broekman DC, Zenz A, Gudmundsdottir BK et al (2011) Functional characterization of codCath, the mature cathelicidin antimicrobial peptide from Atlantic cod (Gadus morhua). Peptides 32:2044–2051. doi:10.1016/j.peptides.2011.09.012

    CAS  Google Scholar 

  118. Pan C-Y, Chen J-Y, Cheng Y-SE et al (2007) Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 26:403–413. doi:10.1089/dna.2006.0564

    CAS  Google Scholar 

  119. Shiomi K, Igarashi T, Yokota H et al (2000) Isolation and structures of grammistins, peptide toxins from the skin secretion of the soapfish Grammistes sexlineatus. Toxicon 38:91–103

    CAS  Google Scholar 

  120. Campagna S, Saint N, Molle G, Aumelas A (2007) Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46:1771–1778. doi:10.1021/bi0620297

    CAS  Google Scholar 

  121. Sato K, Horibe K, Amano K et al (2006) Membrane permeabilization induced by discodermin A, a novel marine bioactive peptide. Toxicon 39:259–264

    Google Scholar 

  122. Matsunaga S, Fusetani N, Hashimoto K, Walchli M (1989) Theonellamide F. A novel antifungal bicyclic peptide from a marine sponge Theonella sp. J Am Chem Soc 111:2582–2588. doi:10.1021/ja00189a035

    CAS  Google Scholar 

  123. Li HY, Matsunaga S, Fusetani N (1995) Halicylindramides A-C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J Med Chem 38:338–343

    CAS  Google Scholar 

  124. Ovchinnikova TV, Balandin SV, Aleshina GM et al (2006) Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochem Biophys Res Commun 348:514–523. doi:10.1016/j.bbrc.2006.07.078

    CAS  Google Scholar 

  125. Pan W, Liu X, Ge F et al (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis grube and its partial characterization. J Biochem 135:297–304

    CAS  Google Scholar 

  126. Tasiemski A, Schikorski D, Le Marrec-Croq F et al (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol 31:749–762. doi:10.1016/j.dci.2006.11.003

    CAS  Google Scholar 

  127. Lee J-U, Kang D-I, Zhu WL et al (2007) Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative. Biopolymers 88:208–216. doi:10.1002/bip.20700

    CAS  Google Scholar 

  128. Tasiemski A, Vandenbulcke F, Mitta G et al (2004) Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J Biol Chem 279:30973–30982. doi:10.1074/jbc.M312156200

    CAS  Google Scholar 

  129. Destoumieux D, Munoz M, Bulet P, Bachère E (2000) Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci 57:1260–1271

    CAS  Google Scholar 

  130. Noga EJ, Stone KL, Wood A et al (2011) Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab. Dev Comp Immunol 35:409–415. doi:10.1016/j.dci.2010.11.015

    CAS  Google Scholar 

  131. Lee SY, Lee BL, Söderhäll K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278:7927–7933. doi:10.1074/jbc.M209239200

    CAS  Google Scholar 

  132. Nakamura T, Furunaka H, Miyata T et al (1988) Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263:16709–16713

    CAS  Google Scholar 

  133. Osaki T, Omotezako M, Nagayama R et al (1999) Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 274:26172–26178

    CAS  Google Scholar 

  134. Charlet M, Chernysh S, Philippe H et al (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271:21808–21813

    CAS  Google Scholar 

  135. Mitta G, Hubert F, Noël T, Roch P (1999) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem 265:71–78

    CAS  Google Scholar 

  136. Mitta G, Vandenbulcke F, Hubert F, Roch P (1999) Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci 112(Pt 2):4233–4242

    CAS  Google Scholar 

  137. Andrä J, Jakovkin I, Grötzinger J et al (2008) Structure and mode of action of the antimicrobial peptide arenicin. Biochem J 410:113–122. doi:10.1042/BJ20071051

    Google Scholar 

  138. Dennison SR, Phoenix AJ, Phoenix DA (2012) Effect of salt on the interaction of Hal18 with lipid membranes. Eur Biophys J 41:769–776. doi:10.1007/s00249-012-0840-6

    CAS  Google Scholar 

  139. Shin YP, Park HJ, Shin SH et al (2010) Antimicrobial activity of a halocidin-derived peptide resistant to attacks by proteases. Antimicrob Agents Chemother 54:2855–2866. doi:10.1128/AAC.01790-09

    CAS  Google Scholar 

  140. Lin W, Liu S, Hu L, Zhang S (2014) Characterization and bioactivity of hepcidin-2 in zebrafish: dependence of antibacterial activity upon disulfide bridges. Peptides 57:36–42. doi:10.1016/j.peptides.2014.04.014

    CAS  Google Scholar 

  141. Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433. doi:10.1002/(SICI)1097-0282(1998)47:6<415:AID-BIP2>3.0.CO;2-D

    CAS  Google Scholar 

  142. Lee IH, Cho Y, Lehrer RI (1997) Effects of pH and salinity on the antimicrobial properties of clavanins. Infect Immun 65:2898–2903

    CAS  Google Scholar 

  143. Van Kan EJM, Demel RA, Breukink E et al (2002) Clavanin permeabilizes target membranes via two distinctly different pH-dependent mechanisms. Biochemistry 41:7529–7539

    Google Scholar 

  144. Lehrer RI, Andrew Tincu J, Taylor SW et al (2003) Natural Peptide antibiotics from tunicates: structures, functions and potential uses. Integr Comp Biol 43:313–322. doi:10.1093/icb/43.2.313

    CAS  Google Scholar 

  145. Gulavita NK, Gunasekera SP, Pomponi SA, Robinson EV (1992) Polydiscamide A: a new bioactive depsipeptide from the marine sponge Discodermia sp. J Org Chem 57:1767–1772. doi:10.1021/jo00032a031

    CAS  Google Scholar 

  146. Azumi K, Yokosawa H, Ishii S (1990) Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 29:159–165

    CAS  Google Scholar 

  147. Tincu JA, Menzel LP, Azimov R et al (2003) Plicatamide, an antimicrobial octapeptide from Styela plicata hemocytes. J Biol Chem 278:13546–13553. doi:10.1074/jbc.M211332200

    CAS  Google Scholar 

  148. Kato Y, Fusetani N, Matsunaga S et al (1988) Bioactive marine metabolites. 24. Isolation and structure elucidation of calyculins B, C, and D, novel antitumor metabolites, from the marine sponge Discodermia calyx. J Org Chem 53:3930–3932. doi:10.1021/jo00252a009

    CAS  Google Scholar 

  149. Capon RJ, Ford J, Lacey E et al (2002) Phoriospongin A and B: two new nematocidal depsipeptides from the Australian marine sponges Phoriospongia sp. and Callyspongia bilamellata. J Nat Prod 65:358–363

    CAS  Google Scholar 

  150. Monastyrnaya MM, Zykova TA, Apalikova OV et al (2002) Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus. Toxicon 40:1197–1217

    CAS  Google Scholar 

  151. Grotendorst GR, Hessinger DA (1999) Purification and partial characterization of the phospholipase A2 and co-lytic factor from sea anemone (Aiptasia pallida) nematocyst venom. Toxicon 37:1779–1796

    CAS  Google Scholar 

  152. Cline EI, Wiebe LI, Young JD, Samuel J (1995) Toxic effects of the novel protein UpI from the sea anemone Urticina piscivora. Pharmacol Res 32:309–314

    CAS  Google Scholar 

  153. Bernheimer AW, Lois SA (1978) A cholesterol-inhibitable cytolytic from the sea anemone Metridium senile. Biochim Biophys Acta 541:96–106. doi:10.1016/0304-4165(78)90270-2

    CAS  Google Scholar 

Download references

Acknowledgments

NP, DPB and BKY are thankful to University Grants Commission, India, Indian Council of Medical Research, India, Council of Scientific and Industrial Research, India, respectively, for the award of Junior/Senior Research Fellowship.

Conflict of interest

The author’s declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Chugh.

Additional information

Nisha Ponnappan and Deepthi Poornima Budagavi have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnappan, N., Budagavi, D.P., Yadav, B.K. et al. Membrane-Active Peptides from Marine Organisms—Antimicrobials, Cell-Penetrating Peptides and Peptide Toxins: Applications and Prospects. Probiotics & Antimicro. Prot. 7, 75–89 (2015). https://doi.org/10.1007/s12602-014-9182-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9182-2

Keywords

Navigation