Skip to main content

Advertisement

Log in

Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

It has been demonstrated that probiotic supplementation has positive effects in several murine models of disease through influences on host immune responses. This study examined the effect of Lactobacillus casei strain Shirota (L. casei Shirota) on the blood glucose, C-reactive protein (CRP), Interleukin-6 (IL-6), Interleukin-4 (IL-4), and body weight among STZ-induced diabetic rats. Diabetes mellitus was induced by streptozotocin (STZ, 50 mg/kg BW) in male SpragueDawley rats. Streptozotocin caused a significant increase in the blood glucose levels, CRP, and IL-6. L. casei Shirota supplementation lowered the CRP and IL-6 levels but had no significant effect on the blood glucose levels, body weight, or IL-4. Inflammation was determined histologically. The presence of the innate immune cells was not detectable in the liver of L. casei Shirota-treated hyperglycemic rats. The probiotic L. casei Shirota significantly lowered blood levels of pro-inflammatory cytokines (IL-6, CRP) and neutrophils in diabetic rats, showing a lower risk of diabetes mellitus and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunning T (2003) Care of people with diabetes: a manual of nursing practice. Wiley-Blackwell, Oxford

    Google Scholar 

  2. Steinberg H, Brechtel G, Johnson A, Fineberg N, Baron A (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94(3):1172

    Article  CAS  Google Scholar 

  3. Zeng G, Quon M (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98(4):894

    Article  CAS  Google Scholar 

  4. Aljada A, Ghanim H, Saadeh R, Dandona P (2001) Insulin inhibits NF {{kappa}} B and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metab 86(1):450

    Article  CAS  Google Scholar 

  5. Dandona P, Chaudhuri A, Ghanim H, Mohanty P (2006) Proinflammatory effects of glucose and anti-inflammatory effect of insulin: relevance to cardiovascular disease. Am J Cardiol 99(4S):15–26

    Google Scholar 

  6. Dandona P (2002) Endothelium, inflammation, and diabetes. Curr Diabetes Rep 2(4):311–315

    Article  Google Scholar 

  7. Malouf J, Kanagala R, Al Atawi F, Rosales A, Davison D, Murali N (2005) High sensitivity C-reactive protein A novel predictor for recurrence of atrial fibrillation after successful cardioversion. J Am Coll Cardiol 46(7):1284–1287

    Article  CAS  Google Scholar 

  8. Ishida K, Kimura F, Imamaki M, Ishida A, Shimura H, Kohno H et al (2006) Relation of inflammatory cytokines to atrial fibrillation after off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg 29(4):501–505

    Article  Google Scholar 

  9. Crook M, Tutt P, Simpson H, Pickup J (1993) Serum sialic acid and acute phase proteins in type 1 and type 2 diabetes mellitus. Clinica Chimica Acta 219(1–2):131–138

    Article  CAS  Google Scholar 

  10. Rodriguez-Moran M, Guerrero-Romero F (1999) Increased levels of C-reactive protein in noncontrolled type II diabetic subjects. J Diabetes Complicat 13(4):211–215

    Article  CAS  Google Scholar 

  11. Jialal I, Devaraj S, Venugopal S (2004) C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 44(1):6

    Article  CAS  Google Scholar 

  12. Wellen K, Hotamisligil G (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119

    CAS  Google Scholar 

  13. Marnell L, Mold C, Du Clos T (2005) C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol 117(2):104–111

    Article  CAS  Google Scholar 

  14. Cho W, Yip T, Chung W, Leung A, Cheng C, Yue K (2006) Differential expression of proteins in kidney, eye, aorta, and serum of diabetic and non-diabetic rats. J Cell Biochem 99(1):256–268

    Article  CAS  Google Scholar 

  15. Jain S, Rains J, Croad J (2007) Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med 43(8):1124–1131

    Article  CAS  Google Scholar 

  16. Plein K, Hotz J (1993) Therapeutic effects of Saccharomyces boulardii on mild residual symptoms in a stable phase of Crohn’s disease with special respect to chronic diarrhea-a pilot study. Z Gastroenterol 31:129–134

    CAS  Google Scholar 

  17. Thomas H, Parker J, Schreiber R, Kay T (1998) IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 102(6):1249

    Article  CAS  Google Scholar 

  18. Vellas BJ, Garry PJ (2001) Aging. In: Bowman BA, Russell RM (eds) Present knowledge in nutrition. ILSI, Washington, DC, pp 439–446

    Google Scholar 

  19. Sartor R (2005) Probiotic therapy of intestinal inflammation and infections. Curr opin Gastroenterol 21(1):44

    Google Scholar 

  20. Erbağci AB, Tarakçioğlu M, Coşkun Y, Sivasli E, Sibel NE (2001) Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem 34(8):645–650

    Article  Google Scholar 

  21. Yadav H, Jain S, Sinha P (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23(1):62–68

    Article  Google Scholar 

  22. Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T (1997) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44(3):357

    Article  CAS  Google Scholar 

  23. Matsuzaki T, Nagata Y, Kado S, Uchida K, Hashimoto S, Yokokura T (1997) Effect of oral administration of Lactobacillus casei on alloxan-induced diabetes in mice. APMIS 105(7–12):637–642

    Article  CAS  Google Scholar 

  24. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M et al (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67(6):1421–1424

    Article  CAS  Google Scholar 

  25. Cui H, Chen C, Wang J, Yang Y, Cun Y, Wu J (2004) Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol 10(10):1521–1525

    CAS  Google Scholar 

  26. O’Mahony L, Feeney M, O’Halloran S, Murphy L, Kiely B, Fitzgibbon J (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharm Therap 15(8):1219–1225

    Article  Google Scholar 

  27. Tanaka R, Ohwaki M (1994) Controlled study on the ingestion of Lactobacillus casei fermented milk on the intestinal microflora, its microbiology and immune system in healthy adults. In: Proceedings of the XII riken symposium on intestinal flora, Tokyo, Japan, pp 85–104

  28. De Preter V, Geboes K, Verbrugghe K, De Vuyst L, Vanhoutte T, Huys G (2004) The in vivo use of the stable isotope-labelled biomarkers lactose ureide and tyrosine to assess the effects of pro-and prebiotics on the intestinal flora of healthy human volunteers. Br J Nutr 92(3):439–446

    Article  Google Scholar 

  29. Shioiri T, Yahagi K, Nakayama S, Asahara T, Yuki N, Kawakami K et al (2006) The effects of a synbiotic fermented milk beverage containing lactobacillus casei strain shirota and transgalactosylated oligosaccharides on defecation frequency, intestinal microflora, organic acid concentrations, and putrefactive metabolites of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci Microflora 25(4):137–146

    CAS  Google Scholar 

  30. Ohashi Y, Nakai S, Tsukamoto T, Masumori N, Akaza H, Miyanaga N et al (2002) Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int 68(4):273–280

    Article  CAS  Google Scholar 

  31. Ishikawa H, Akedo I, Otani T, Suzuki T, Nakamura T, Takeyama I et al (2005) Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 116(5):762–767

    Article  CAS  Google Scholar 

  32. Souza M, Aguilar-Nascimento J, Dock-Nascimento D (2007) Effects of budesonide and probiotics enemas on the systemic inflammatory response of rats with experimental colitis. Acta Cirurgica Brasileira 22:40–45

    Article  Google Scholar 

  33. Damaskos D, Kolios G (2008) Probiotics and prebiotics in inflammatory bowel disease: microflora ‘on the scope’. Br J Clin Pharmacol 65(4):453

    Article  Google Scholar 

  34. Raz I, Eldor R, Naparstek Y (2005) Immune modulation for prevention of type 1 diabetes mellitus. Trends Biotechnol 23(3):128–134

    Article  CAS  Google Scholar 

  35. Kern P, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280(5):E745

    CAS  Google Scholar 

  36. Singh U, Devaraj S, Jialal I (2005) Vitamin E, oxidative stress, and inflammation. Nutrition 25(1):151–174

    Google Scholar 

  37. Grunfeld C, Feingold K (1991) The metabolic effects of tumor necrosis factor and other cytokines. Biotherapy 3(2):143–158

    Article  CAS  Google Scholar 

  38. Lfgren P, Naslund E, Reynisdottir S, Van Harmelen V, Ryden M, Rssner S (2000) Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue. Diabetes 49(5):688

    Article  Google Scholar 

  39. Halse R, Pearson S, McCormack J, Yeaman S, Taylor R (2001) Effects of tumor necrosis factor- on insulin action in cultured human muscle cells. Diabetes 50(5):1102

    Article  CAS  Google Scholar 

  40. Fernandez-Real J, Vayreda M, Richart C, Gutierrez C, Broch M, Vendrell J (2001) Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab 86(3):1154

    Article  CAS  Google Scholar 

  41. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15(2):74–80

    Article  CAS  Google Scholar 

  42. Hussain M, Peakman M, Gallati H, Lo S, Hawa M, Viberti G (1996) Elevated serum levels of macrophage-derived cytokines precede and accompany the onset of IDDM. Diabetologia 39(1):60–69

    CAS  Google Scholar 

  43. Pickup J, Mattock M, Chusney G, Burt D (1997) NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40(11):1286–1292

    Article  CAS  Google Scholar 

  44. Pradhan A, Manson J, Rifai N, Buring J, Ridker P (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327

    Article  CAS  Google Scholar 

  45. Spranger J, Kroke A, Mhlig M, Hoffmann K, Bergmann M, Ristow M (2003) Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes 52(3):812

    Article  CAS  Google Scholar 

  46. Rapoport M, Jaramillo A, Zipris D, Lazarus A, Serrez D, Leiter E et al (1993) Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 178(1):87

    Article  CAS  Google Scholar 

  47. Cameron M, Arreaza G, Zucker P, Chensue S, Strieter R, Chakrabarti S (1997) IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol 159(10):4686

    CAS  Google Scholar 

  48. Lee M, Koh J, Han S, Ko K, Kim S (2002) Prevention of autoimmune insulitis by delivery of interleukin-4 plasmid using a soluble and biodegradable polymeric carrier. Pharm Res 19(3):246–249

    Article  CAS  Google Scholar 

  49. Kekkonen R, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I (2008) Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN- production. World J Gastroenterol: WJG 14(8):1192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. A. Mutalib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarfeshani, A., Khaza’ai, H., Mohd Ali, R. et al. Effect of Lactobacillus casei on the Production of Pro-Inflammatory Markers in Streptozotocin-Induced Diabetic Rats. Probiotics & Antimicro. Prot. 3, 168–174 (2011). https://doi.org/10.1007/s12602-011-9080-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-011-9080-9

Keywords

Navigation