Skip to main content
Log in

Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea

  • Article
  • Published:
Ocean Science Journal Aims and scope Submit manuscript

Abstract

The spatial scales of mesoscale eddies are of importance to understand physio-biogeochemical processes in the East/Japan Sea. Chlorophyll-a concentration images from the Geostationary Ocean Color Imager (GOCI) revealed numerous eddies during the phytoplankton bloom in spring. These eddies were manually digitized to obtain geolocation information at the peripheries from GOCI images and then least-square fitted to each ellipse. The elliptic elements were the geolocation position of the eddy center, the rotation angle from due east, the eccentricity, the lengths of the semi-major and semi-minor axes, and the mean radius of the ellipse. The spatial scales of eddies had a mean radii ranging from 10 km to 75 km and tended to be smaller in the northern region. The scales revealed a linear trend of about −7.26 km/°N as a function of the latitude. This tendency depended on the latitudinal variation of the internal Rossby radius of deformation, which originates from the substantial difference in the density structure of the water column. The scales from the sea surface temperature image were larger by 1.30 times compared to those from ocean color image. This implies that physical processes along the periphery of the eddy affect the nutrient dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown OB, Olson DB, Brown JW, Evans RH (1983) Satellite infrared observation of the kinematics of a warm-core ring. Aust J Mar Freshw Res 34:535–545

    Article  Google Scholar 

  • Cornillon PC, Park K-A (2001) Warm core ring velocities inferred from NSCAT. Geophys Res Lett 28:575–578

    Article  Google Scholar 

  • Cornillon PC, Weyer R, Flierl G (1989) Translational velocity of warm core rings relative to the slope water. J Phys Oceanogr 19:1317–1332

    Article  Google Scholar 

  • Denman KL, Abbott MR (1994) Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery. J Geophys Res 99:7433–7442

    Article  Google Scholar 

  • Dewar WK, Flierl GR (1987) Some effects of the wind on rings. J Phys Oceanogr 17:1653–1667

    Article  Google Scholar 

  • Evans RH, Baker KS, Brown OB, Smith RC (1985) Chronology of warm-core ring 82B. J Geophys Res 90:8803–8812

    Article  Google Scholar 

  • Gower JFR, Denman KL, Holyer RJ (1980) Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structures. Nature 288:157–159

    Article  Google Scholar 

  • Hooker SB, Brown JW (1994) Warm core ring dynamics derived from satellite imagery. J Geophys Res 99:25,181–25,194

    Article  Google Scholar 

  • Hooker SB, Olson DB (1984) Center of mass estimation in closed vortices: A verification in principle and practice. J Atmos Ocean Techno 1:247–255

    Article  Google Scholar 

  • Huh OK (1982) Spring season flow of the Tsushima Current and its separation from the Kuroshio: Satellite evidence. J Geophys Res 37:9687–9693

    Article  Google Scholar 

  • Huh OK (1987) Satellite observations of surface temperatures and flow patterns, Sea of Japan and East China Sea, late March 1979. Remote Sens Environ 22:379–393

    Article  Google Scholar 

  • Isoda Y, Saitoh S (1988) Variability of sea surface temperature obtained by the statistical analysis of AVHRR imagery. J Oceanogr 44:52–59

    Google Scholar 

  • Joyce TM (1984) Velocity and hydrographic structure of a Gulf Stream warm-core ring. J Phys Oceanogr 14:936–947

    Article  Google Scholar 

  • Joyce TM, Kennelly MA (1985) Upper-ocean velocity structure of Gulf Stream warm-core ring 82B. J Geophys Res 90:8839–8844

    Article  Google Scholar 

  • Kahru M, Mitchell BG, Gille ST, Hewes CD, Holm-Hansen O (2007) Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys Res Lett 34:L14603. doi:10.1029/2007GL030430

    Article  Google Scholar 

  • Kubota M (1990) Variability of the polar front in the Japan Sea. Sora to Umi 12:35–44

    Google Scholar 

  • Lai DV, Richardson PL (1977) Distribution and movement of Gulf Stream rings. J Phys Oceanogr 7:670–683

    Article  Google Scholar 

  • Lewis MR (2002) Variability of plankton and plankton processes on the mesoscale. In: Williams PJ Le B, Thomas DN, Reynolds CS (eds) Phytoplankton Productivity: Carbon assimilation in marine and freshwater ecosystems. Blackwell, pp 141–155

  • McGillicuddy Jr DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266

    Article  Google Scholar 

  • Moon J-E, Park Y-J, Ryu J-H, J-K Choi, Ahn J-H, Min J-E, Son Y B, Lee S-J, Han H-J, Ahn Y-H (2012) Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean Sci J (in this issue)

  • Nof D (1983) On the migration of isolated eddies with applications to Gulf Stream rings. J Mar Res 41:399–425

    Article  Google Scholar 

  • Ogden JC (1997) Marine managers look upstream for connections. Science 278:1414–1415

    Article  Google Scholar 

  • Olson DB, Schmitt RW, Kennelly M, Joyce TM (1985) A twolayer diagnostic model of the long-term physical evolution of warm-core ring 82B. J Geophys Res 90:8813–8822

    Article  Google Scholar 

  • O’Reilly JE, Maritorena S, Siegel DA, O’Brien MC, Toole D, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF, Hooker SB, McClain CR, Carder KL, Muller-Karger F, Harding L, Magnuson A, Phinney D, Moore GF, Aiken J, Arrigo KR, Letelier R, Culver M (2000) Ocean color chlorophyll algorithms for SeaWiFS, OC2, and OC4: version 4. In: Hooker SB, Firestone ER (eds) SeaWiFS Postlaunch Calibration and Validation Analyses Part 3. NASA Technical Memorandum 2000-206892, NASA Goddard Space Flight Center, Greenbelt, Maryland, 11:9–27

    Google Scholar 

  • Park K-A, Chung JY (1999) Spatial and temporal scale variations of sea surface temperature in the East Sea using NOAA/ AVHRR data. J Oceanogr 55:271–288

    Article  Google Scholar 

  • Park K-A, Chung JY, Kim K (2004) Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophys Res Lett 31:L07304. doi: 10.1029/2004GL019424

    Article  Google Scholar 

  • Park K-A, Chung JY, Kim K, Cornillon PC (2005) Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea. Geophys Res Lett 32:L05610. doi:10.1029/2004GL022197

    Article  Google Scholar 

  • Park K-A, Ullman DS, Kim K, Chung JY, Kim K-R (2007) Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep-Sea Res I 54:453–470

    Article  Google Scholar 

  • Richardson PL (1980) Gulf Stream ring trajectories. J Phys Oceanogr 10:90–104

    Article  Google Scholar 

  • Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457

    Article  Google Scholar 

  • Schmitt RW, Olson DB (1985) Wintertime convection in warmcore rings: Thermocline ventilation and the formation of mesoscale lenses. J Geophys Res 90:8823–8837

    Article  Google Scholar 

  • Stammer D (1997) Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J Phys Oceanogr 27:1743–1769

    Article  Google Scholar 

  • Strass VH, Garabato ACN, Pollard RT, Fischer HI, Hense I, Allen JT, Read JF, Leach H, Smetacek V (2002) Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current. Deep-Sea Res II 49:3735–3769

    Article  Google Scholar 

  • Toba Y, Kawamura H, Yamashita F, Hanawa K (1984) Structure of horizontal turbulence in the Japan Sea. In: Ichiye T (ed) Ocean hydrodynamics of the Japan and East China Seas. Elsevier Oceanography Series 39, pp 317–332

  • Toner M, Kirwan Jr AD, Poje AC, Kantha LH, Mller-Karger FE, Jones CKRT (2003) Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. J Geophys Res 108:3105. doi:10.1029/2002JC001499

    Article  Google Scholar 

  • Whitney F, Robert M (2002) Structure of Haida eddies and their transport of nutrient from coastal margins into the NE Pacific Ocean. J Oceanogr 58:715–723

    Article  Google Scholar 

  • Yamada K, Ishizaka J, Yoo S, Kim H-C, Chiba S (2004) Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Prog Oceanogr 61:193–211

    Article  Google Scholar 

  • Yentsch CS, Phinney DA (1985) Rotary motion and convection as a mean of regulating primary production in warm core rings. J Geophys Res 90:3237–3248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ae Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, KA., Woo, HJ. & Ryu, JH. Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea. Ocean Sci. J. 47, 347–358 (2012). https://doi.org/10.1007/s12601-012-0033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12601-012-0033-3

Key words

Navigation