Skip to main content
Log in

Non-specific lipid transfer proteins (ns-LTPs) from maize induce resistance in pearl millet against downy mildew disease

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Non-specific Lipid Transfer Proteins were isolated and purified from maize seeds using combinations of ammonium sulphate precipitation and cat-ion exchange chromatography followed by HPLC. Two peptide segments were obtained by MALDI-TOF MS analysis, which were designated as ns-LTP M1 and ns-LTP M2. Both the ns-LTPs were treated to pearl millet seeds at different concentrations for 6 h. Among the concentrations tested, ns-LTP M1 (50 μg/ ml) showed a maximum seed germination of 94% and 1320 seedling vigor followed by ns-LTP M2. The maximum downy mildew disease protection of 62% was offered by ns-LTP M1 (50 μg/ ml) followed by ns-LTP M2 which offered 58% protection. Furthermore, peroxidase (POX) and lipoxigenase (LOX) enzymes related to plant resistance metabolism were also increased considerably after ns-LTP M1 treatment. POX activity was up to two folds when compared to susceptible control seedlings. Thus the present investigation suggests that the maize LTPs could enhance downy mildew disease resistance in pearl millet through the induction of defense mediated enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Abdul Baki, A. A., & Anderson, J. D. (1973). Vigour determination in soybean seed by multiple criteria. Crop Science., 13, 630–633.

    Article  Google Scholar 

  • Anonymous, 2013. Co-ordinator’s Annual Report 2012-13, AICPMIP, Mandoor, Jodhpur, Rajasthan, India: ICRISAT.

  • Axelrod, B., Cheesbrough, T. M., & Laakso, S. (1981). Lipoxygenases from soybeans. Methods in Enzymoogyl., 71, 441–451.

    Article  CAS  Google Scholar 

  • Baillieul, F., Ruffay, P. D., & Kauffman, S. (2003). Molecular cloning and the biological activity of α-, β- and γ- megaspermin, the three elicitins secreted by Phytophthora megasperma. Plant Physiology., 31, 55–66.

    Google Scholar 

  • Blein, J. P., Coutos-Thevenot, P., Marion, D., & Ponchet, M. (2002). From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defense mechanisms. Trends in Plant Science., 7, 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry., 72, 248–254.

    Article  CAS  Google Scholar 

  • Bu, B., Qiu, B., Zenq, H., Guo, L., Yuan, J., & Yang, X. (2014). A fungal protein elicitor Pev D1 induces Verticillium wilt resistant in cotton. Plant Cell Rep., 33, 461–470.

    Article  CAS  PubMed  Google Scholar 

  • Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C., & Blein, J. P. (2001). A lipid transfer protein binds to a receptor involved in the control of plant defense responses. FEBS Letters., 509, 27–30.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, A. O., & Gomes, V. M. (2007). Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides., 28, 1144–1153.

    Article  CAS  Google Scholar 

  • Clark, A. M., & Bohnert, H. J. (1999). Cell specific expression of genes of the lipid transfer protein from Arabidopsis thaliana. Plant Cell Physiology., 40, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Douliez, J., Michon, T., Elmorjani, K., & Marion, D. (2000). Mini Review: Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. Journal of Cereal Science., 32, 1–20.

    Article  CAS  Google Scholar 

  • Flemming, A. J., Mandel, T., Hofman, S., Sterk, P., De Vries, S. C., & Kuhlemeir, C. (1992). Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant Journal., 2, 855–862.

    Google Scholar 

  • Finkina, E. I., Balandin, S. V., Serebryakova, M. V., Potapenko, N. A., Tagaev, A. A., & Ovchinnikova, T. V. (2007). Purification and primary structure of novel lipid transfer proteins from germinated Lentil (Lens culinaris) seeds. Russian in Biokhimiya., 72, 533–543.

    Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Segura, A., & Moreno, M. (1995). The defensive role of non specific lipid-transfer proteins in plants. Trends in Microbiology., 3, 72–74.

    Article  CAS  PubMed  Google Scholar 

  • Gorjanovic, S., Spillner, E., Beljanski, M. V., Gorjanovic, R., Pavlovic, M., & Gojgic-Cvijanovic, G. (2005). Malting barley grain non-specific lipid transfer proteins (ns-LTPs) importance for grain protection. Journal of the Institute of Brewing., 111, 99–104.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber of Colletotrichum lagenarium. Physiology and Plant Pathology., 20, 73–82.

    Article  CAS  Google Scholar 

  • Jones, L. B., & Marinac, A. L. (2000). Purification and partial characterization of a second cysteine proteinase inhibitor from ungerminated barley (Hordeum vulgare L.). Journal of Agriculture and Food Chemistry, 48, 257–264.

    Article  CAS  Google Scholar 

  • Kader, J. C. (1996). Lipid-transfer protein in plants. Annual Review of Plant Physiology and Plant Molecular Biology., 47, 627–654.

    Article  CAS  PubMed  Google Scholar 

  • Khairwal, I. S. (2008). Pearl millet coordinators review report (pp. 1–23). Mandor, Jodhpur: Indian Council of Agricultural Research.

    Google Scholar 

  • Kiba, A., Nakatsuka, T., Yamamura, S., & Nishihara, M. (2012). Gentian lipid transfer protein homolog with antimicrobial properties confers resistance to Botrytis cinerea in transgenic tobacco. Plant Biotechnology., 29, 95–101.

    Article  CAS  Google Scholar 

  • Koehl, J., Obwald, W., Kohn, H., Elstner, E. F., & Heiser, I. (2003). Different responses of two tobacco cultivars and their cell suspension cultures to quercinin, a novel elicitin from Phytophthora quercina. Plant Physiology and Biochemistry., 41, 261–269.

    Article  CAS  Google Scholar 

  • Lee, S. B., Go, Y. S., Bae, H. J., Park, J. H., Cho, S. H., Cho, H. J., Lee, D. S., Park, O. K., Hwang, I., & Suh, M. (2009). Disruption of glycosyl phosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiology., 150, 42–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, Y. J., Samuel, P., Lin, C. H., & Lyu, P. C. (2002). Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice (Oryza sativa). Biochemistry and Biophysics. Res. Commu., 294, 535–540.

    Article  CAS  Google Scholar 

  • Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., & Cameron, R. K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature., 419, 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Molina, A., Segura, A., & Garcia-Olmedo, F. (1993). Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Letters., 316, 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Monnet, F. P., Dieryck, W., Boutrot, F., Joudrier, P., & Gautier, M. F. (2001). Purification, characterization and cDNA cloning of a type 2 (7 kDa) lipid transfer protein from Triticum durum. Plant Science., 161, 747–755.

    Article  CAS  Google Scholar 

  • Murali, M., Amruthesh, K. N., Sudisha, J., Niranjana, S. R., & Shetty, H. S. (2012). Screening for plant growth promoting fungi and their ability for growth promotion and induction of resistance in pearl millet against downy mildew disease. Journal of Phytology., 4, 30–36.

    Google Scholar 

  • Murali, M., Sudisha, J., Amruthesh, K. N., Ito, S. I., & Shetty, H. S. (2013). Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology., 15, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Mythrashree, S. R., Geetha, N. P., Pushpalatha, H. G., Murali, M., Shetty, H. S., & Amruthesh, K. N. (2013). Lactuca sativa mediated chitinase activity and resistance in pearl millet against Sclerospora graminicola. African Journal of Plant Science., 7, 492–503.

    Article  Google Scholar 

  • Neumann, G. M., Condron, R., Thomas, I., & Polya, G. M. (1995). Purification, characterization and sequencing of a family of Petunia petal lipid transfer proteins phosphorylated by plant calcium-dependent protein kinase. Plant Science., 107, 129–145.

  • Orsomando, G., Lorenzi, M., Ferrari, E., Chiara, C., Spinsi, A., & Ruggieri, S. (2003). PcF protein from Phytophthora cactorum and its recombinant homologue elicit phenylalanine ammonia lyase. Cellular and Molecular Life Sciences., 60, 470–476.

    Article  Google Scholar 

  • Pearce, R. S., Houlston, C. E., Atherton, K. M., Rixon, J. E., Harrison, P., Hughes, M. A., & Dunn, M. A. (1998). Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Physiology, 117, 787–795.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu, D. W., Clayton, K., & Wei, Z. M. (2002). Effects of messenger on disease resistance and plant growth in strawberry and cucumber. Phytopathology, 92, S67 E.

    Google Scholar 

  • Safeeulla, K. M. (1976). Biology and control of the downy mildews of pearl millet, sorghum and finger millet. Mysore, India: Wesley Press.

    Google Scholar 

  • Saikia, R., Yadav, M., Singh, B. P., Gogoi, D. K., Singh, T., & Arora, D. K. (2006). Induction of resistance in chickpea by cell wall protein of Fusarium oxysporum f. sp. ciceri and Macrophomina phaseolina. Current Science, 91, 15432–15446.

    Google Scholar 

  • Sarowar, S., Kim, Y. J., Kim, K. D., Hwang, B. K., Ok, S. H., & Shin, J. S. (2009). Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Reproduction., 28, 419–427.

    Article  CAS  Google Scholar 

  • Sharathchandra, R. G., Geetha, N. P., Amruthesh, K. N., Ramachandra Kini, K., Sarosh, B. R., Shetty, N. P., & Shetty, H. S. (2006). Isolation and characterisation of a protein elicitor from Sclerospora graminicola and elicitor-mediated induction of defence responses in cultured cells of Pennisetum glaucum. Functional Plant Biology., 33, 267–278.

    Article  CAS  Google Scholar 

  • Singh, S. D., & Gopinath, R. A. (1985). Seedling inoculation technique for detecting downy mildew resistance in pearl millet. Plant Disease., 72, 425–428.

    Article  Google Scholar 

  • Tchang, F., This, P., Stiefel, V., Arondel, V., Morch, M. D., Pages, M., Puigdomenech, P., Grellet, F., Delseny, M., Bouillon, P., Huet, J. C., Guerbette, F., Beauvais-Cante, F., Duranton, H., Pernollet, J. C., & Kader, J. C. (1988). Phospholipid transfer protein: Full-length cDNA and aminoacid sequence in maize. Amino acid sequence homologies between plant phospholipids transfer proteins. Journal of Biology and Chemistry., 263, 16849–16855.

    CAS  Google Scholar 

  • Thakur, R. P., Rao, V. P., Sastry, J. G., Sivaramakrishnan, S., Amruthesh, K. N., & Barbind, L. D. (1999). Evidence for a new virulent pathotype of Sclerospora graminicola on pearl millet. Journal of Mycology and Plant Pathology., 29, 61–69.

    Google Scholar 

  • Thipyapong, P., & Steffens, J. C. (1997). Tomato polyphenol oxidase (PPO): Differential response of the PPO F promoter to injuries and wound signals. Plant Physiology., 115, 409–418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thoma, S., Hecht, U., Kippers, A., Botella, J., De Vries, S., & Somerville, C. (1994). Tissue specific expression of a gene encoding a cell wall localized lipid transfer protein from Arabidopsis. Plant Physiology., 105, 35–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vignols, F., Lund, G., Pammi, S., Tremousaygue, D., Grellet, F., Kader, J. C., Puigdomenech, P., & Delseny, M. (1994). Characterization of a rice gene coding for a lipid transfer protein. Gene., 142, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control:Maximizing the efficacy of resistance elicitors. Phytopathology., 95, 1368–1373.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. C., Hu, D. W., Zhang, Z. G., Ma, Z. C., & Li, D. B. (2003). Purification and immune cytolocalization of a novel Phytophthora boehmeriae protein inducing hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiological and Molecular Plant Pathology., 63, 223–232.

    Article  CAS  Google Scholar 

  • Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, Y. S., & Collmer, A. (1992). Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science., 257, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Yeats, T. H., & Rose, J. K. (2008). The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Science., 17, 191–198.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Yang, X., Liu, Q., Qiu, D., Zhang, Y., Zeng, H., Yuan, J., & Mao, J. (2010). Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiology Research., 165, 142–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University Grants Commission (UGC) for awarding Major Research Project to corresponding author for financial assistance. Authors are also thankful to Indian Council of Agricultural Research (ICAR), All India Co-ordinated Pearl Millet Improvement Project (AICPMIP), Government of India, Mysore Center, Institution of Excellence (IOE) Project Authorities, University of Mysore, Mysore, India and Department of Botany DST-FIST for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Amruthesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjula, S., Murali, M., Shivamurthy, G.R. et al. Non-specific lipid transfer proteins (ns-LTPs) from maize induce resistance in pearl millet against downy mildew disease. Phytoparasitica 43, 437–447 (2015). https://doi.org/10.1007/s12600-014-0446-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-014-0446-x

Key words

Navigation