Skip to main content
Log in

Trichoderma viride induces phenolics in groundnut (Arachis hypogaea L.) seedlings challenged with rot pathogen (Aspergillus niger Van Tieghem)

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The study showed significant differences in percent collar rot disease incidence in groundnut varieties grown in non-infested soil (T1), challenged with pathogen – Aspergillus niger (T2), and pathogen + Trichoderma viride 60 (T3) treatments. Total phenols revealed a significantly higher content in tolerant varieties (J-11, GG-2) of groundnut compared with moderately susceptible (GAUG-10, GG-13) and susceptible (GG-20) varieties. The phenol content accumulated at a higher rate (193%) in GG-20, followed by GG-2 (146%) and J-11 (107%) varieties during disease development stages. HPLC analysis detected six major phenolics, viz., hydroquinone, gallic, chlorogenic, ferulic, salicylic and cinnamic acids. Among six peaks, hydroquinone was found highest in GG-2 at 3 days in T3. Gallic and salicylic acids increased up to 9 days, while ferulic acid continued to induce up to 15 days in tolerant varieties (J-11, GG-2) of Trichoderma-treated (T3) seedlings. A correlation study indicated that Trichoderma treatment induced five phenolics – except gallic acid – with a higher level of significance in a susceptible variety to reduce disease incidence compared with tolerant varieties. Results demonstrate the T. viride 60 mediated systemic induction of phenolics for biologic control and their probable role in protecting groundnut against A. niger infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Benítez, T., Rincón, A., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.

    PubMed  Google Scholar 

  • Binutu, O. A., & Cordell, G. A. (2000). Gallic acid derivative from Mezoneuron benthamianum leaves. Pharmacological Biology, 38, 284–286.

    Article  CAS  Google Scholar 

  • Curir, P., Van Sumere, C. F., Termini, A., Barthe, P., Marchesini, A., & Dolci, M. (1990). Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation. Plant Physiology, 92, 1148–1153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dakora, F. D., & Phillips, D. A. (1996). Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology, 49, 1–20.

    Article  CAS  Google Scholar 

  • Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.

    Article  CAS  Google Scholar 

  • De Vecchi, L., & Matta, A. (1989). An ultrastructural and cytochemical study of peroxidases, polyphenoloxidases, and phenols in xylem of tomato plant infected with Fusarium oxysporum f. sp. lycopersici or Fusarium oxysporum f. sp. melonis. Caryologia, 42, 103–114.

    Article  Google Scholar 

  • Deladonde, M., Barret, Y., & Coumans, M. P. (1996). Development of phenolic compounds in maize anthers (Zea mays) during cold pre-treatment prior to endogenesis. Journal of Plant Physiology, 149, 612–616.

    Article  Google Scholar 

  • Diaz, J., Barcelo, A. R., & de Caceres, F. M. (1997). Changes in shikimate dehydrogenase and the end products of the shikimate pathway, chlorogenic acid and lignins, during the early development of seedlings of Capsicum annuum. New Physiology, 136, 183–188.

    Article  CAS  Google Scholar 

  • Gajera, H., Rakholiya, K., & Vakharia, D. (2011). Bioefficacy of Trichoderma isolates against Aspergillus niger Van Tieghem inciting collar rot in groundnut (Arachis hypogaea L.). Journal of Plant Protection Research, 51, 240–247.

    Article  Google Scholar 

  • Gajera, H. P., & Vakharia, D. N. (2010). Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiological and Molecular Plant Pathology, 74, 274–282.

    Article  CAS  Google Scholar 

  • Jindal, S., Arora, Y. K., & Bajaj, K. L. (1979). Studies on phenols of resistant and susceptible varieties of muskmelon. Biochemical Journal, 6, 48–53.

    CAS  Google Scholar 

  • Kale, M. C., & Choudhary, A. D. (2001). Induction of phenylalanine ammonia-lyase in groundnut cultivars in response to biotic and abiotic stress. Indian Phytopathology, 54, 288–292.

    CAS  Google Scholar 

  • Kevers, C. M., Coumans, G. M., & Gasper, T. (1984). Physiological and biochemical events leading to vitrification of plants cultured in vitro. Physiologia Plantarum, 61, 69–74.

    Article  CAS  Google Scholar 

  • Khaleifa, M. M. A., Azzam, C. R., & Azer, S. A. (2006). Biochemical markers associated with disease resistance to damping-off and root-rot diseases of peanut mutants and their productivity. Egyptian Journal of Phytopathology, 34, 53–74.

    Google Scholar 

  • Kishore, G. K., Pande, S., & Podile, A. R. (2006). Pseudomonas aeruginosa GSE 18 inhibits the cell wall degrading enzymes of Aspergillus niger and activates defence-related enzymes of groundnut in control of collar rot disease. Australasian Plant Pathology, 35, 259–263.

    Article  CAS  Google Scholar 

  • Kishore, G. K., Pande, S., Rao, J. N., & Podile, A. R. (2001). Biological control of crown rot groundnut by Trichoderma harzianum and T. viride. International Arachis Newsletter, 21, 39–40.

    Google Scholar 

  • Kosuge, T. (1969). The role of phenolics in host response to infection. Annual Review of Phytopathology, 7, 195–222.

    Article  CAS  Google Scholar 

  • Kucuk, C., & Kivank, M. (2003). Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turkish Journal of Biology, 27, 247–253.

    CAS  Google Scholar 

  • Lavania, M., Chauhan, P. S., Chauhan, S. V. S., Singh, H. B., & Nautiyal, C. S. (2006). Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52, 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, C. G. R., Rolfe, B. G., & Djordjevic, M. A. (1996). Rhizobium inoculation induces condition dependent changes in the flavonoid composition of root exudates from Trifolium subterraneum. Australian Journal of Plant Physiology, 23, 93–101.

    Article  CAS  Google Scholar 

  • Matta, A., Ferraris, L., & Abbattista, G. I. (1988). Variation of phenoloxidase activities and the consequence of stress induced resistance to Fusarium wilt of tomato. Journal of Phytopathology, 122, 45–53.

    Article  Google Scholar 

  • Muhammad, S., & Amusa, N. A. (2003). In vitro inhibition of growth of some seedling blight including pathogens by compost-inhabiting microbes. African Journal of Biotechnology, 2, 161–164.

    Google Scholar 

  • Ndakidemi, P. A., & Dakora, F. D. (2003). Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Review. Functional Plant Biology, 30, 729–745.

    Article  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Pollock, C. J., & Drysdale, R. B. (1976). The role of phenolic compounds in the resistance of tomato cultivars to Verticillium alboatrum. Phytopathology, 80, 171–175.

    Google Scholar 

  • Prabhu, K. S., & Urs, S. D. (1998). Efficacy of bio agents for management of collar rots of groundnut caused by Aspergillus niger. Current Research in University of Agricultural Science, Bangalore, 27, 114–115.

    Google Scholar 

  • Punja, Z. K. (1985). The biology, ecology and control of Sclerotium rolfsii. Annual Review of Phytopathology, 23, 97–127.

    Article  CAS  Google Scholar 

  • Raju, M. R. B., & Murthy, K. V. M. K. (2000). Efficacy of Trichoderma spp. in the management of collar rot of groundnut caused by Aspergillus niger Van Tieghem. Indian Journal of Plant Protection, 28, 197–199.

    Google Scholar 

  • Rao, S. K. T., & Sitaramaih, K. (2000). Management of collar rot disease (Aspergillus niger) in groundnut with Trichoderma spp. Journal of Mycology and Plant Pathology, 30, 221–224.

    Google Scholar 

  • Sarma, B. K., & Singh, U. P. (2003). Ferulic acid may prevent infection of Cicer arietinum by Sclerotium rolfsii. World Journal of Microbiology & Biotechnology, 19, 123–127.

    Article  CAS  Google Scholar 

  • Sarma, B. K., Singh, D. P., Mehta, S., Singh, H. B., & Singh, U. P. (2002). Plant growth promoting rhizobacteria-elicited alteration in phenolic profiles of chick pea (Cicer arietinum) infected by Sclerotium rolfsii. Journal of Phytopathology, 150, 277–282.

    Article  CAS  Google Scholar 

  • Sinclair, J. B., & Dhingra, O. D. (1985). Basic plant pathology methods (pp. 295–315). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Singh, R. B., Singh, H. N., Singh, P., & Kaur, J. (2001). A comparison of different substrates for the mass production of Trichoderma. Annual Plant Protection and Science, 9, 248–253.

    Google Scholar 

  • Singh, U. P., Sarma, B. K., & Singh, D. P. (2003). Effect of plant growth promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology, 46, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed., pp. 145–186). Culcatta, India: Oxford and IBH Publishing Co.

    Google Scholar 

  • Subhalakshmi, T., & Chowdhury, A. K. (2008). Biochemical changes in groundnut plants due to pathogenic infection. Journal of Interacademicia, 12, 8–11.

    Google Scholar 

  • Sudhagar, R., Sassikumar, D., & Muralidharan, V. (2000). Biochemical changes in groundnut genotypes consequent to infection with the rust pathogen Puccinia arachidis. Tropical Agricultural Research, 12, 199–204.

    Google Scholar 

  • Takahama, U., & Oniki, T. (1992). Regulation of peroxidase dependent oxidation of phenols in the apoplast of spinach leaves by ascorbate. Plant and Cell Physiology, 33, 379–387.

    CAS  Google Scholar 

  • Taylor, A., & Zucker, M. (1966). Turnover and metabolism of chlorogenic acid in xanthium leaves and potato tubers. Plant Physiology, 41, 1350–1359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waterman, P. G., & Mole, S. (1994). Analysis of phenolic metabolites (pp. 143–167). Oxford, UK: Blackwell Scientific Publications.

    Google Scholar 

Download references

Acknowledgment

Authors are very thankful to Research Scientist (Groundnut), Oilseed Research Station, Junagadh Agricultural University, Junagadh, India, for provision of seeds of different varieties of groundnut.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Gajera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajera, H.P., Jadav, J.K., Patel, S.V. et al. Trichoderma viride induces phenolics in groundnut (Arachis hypogaea L.) seedlings challenged with rot pathogen (Aspergillus niger Van Tieghem). Phytoparasitica 42, 703–712 (2014). https://doi.org/10.1007/s12600-014-0413-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-014-0413-6

Keywords

Navigation