Skip to main content
Log in

Using geographic information systems to map the prevalent weeds at an early stage of the cotton crop in relation to abiotic factors

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Cotton is still one of the most important crops in Greece despite the changes in the country’s socioeconomic status which have reduced the total cultivated area. In order to minimize yield losses, weed control is essential during the cultivation period. The aim of this study was to determine the distribution of the prevalent weeds that escape the usual herbicide application in the main cotton zone, located in the Karditsa prefecture. The weed densities and the irrigation methods used were recorded in 101 sampling sites of 25 m2; the cotton crop had been grown for the last 5 years using similar weed control techniques. Existing soil maps of the area were also used, through which soil data (texture and carbonates content) were accessed. Among the 14 weed species that have been recorded, four were perennial (Cyperus rotundus, Convolvulus arvensis, Cynodon dactylon, Sorhum halepense) and were ranked as first, second, fourth and fifth, respectively, according to the mean density, indicating the inefficient herbicidal control. In the fields irrigated by sprinklers, the weeds occurred in greater populations than those that occurred in fields irrigated by drippers, at values of 4.64 and 3 weeds m-2, respectively. In terms of the studied soil properties, the distribution of C. arvensis was significantly correlated with carbonate content and soil texture in the surface soil layer. The autocorrelation analysis showed that only perennial weeds are spatially correlated whereas the interpolated maps showed this spatial trend of weed appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alatas, I., Argyropoulos, G., Varvarousis, I., Giankakis, Th, Damalas, P., Karakonstantinos, V., et al. (1991). Soil survey of Karditsa Prefecture. Larissa, Greece: National Agricultural Research Foundation, Institute for Soil Classification and Mapping.

    Google Scholar 

  • Andreasen, C., Haas, H., & Streibig, J. C. (1989). Preliminary report on changes in the weed flora. 6th Danish Plant Protection Conference, Side Effect of Pesticides/ Weeds (Statens Planteavlsforsoeg, Flakkebjerg, Denmark), pp. 125–133.

  • Andreasen, C., Streibig, J. C., & Haas, H. (1991). Soil properties affecting the distribution of 37 weed species in Danish fields. Weed Research, 31, 181–187.

    Article  Google Scholar 

  • Barralis, G. (1976). Methode d’etude des groupements adventices des cultures annuelles: application a la Cote d’Or. C. R. V eme Colloque International sur l’Ecologie et la Biologie des Mauvaises Herbes (Dijon, France), 1, 59–68.

  • Burkart, R. M., & Buhler, D. D. (1997). A regional framework for analyzing weed species and assemblage distributions using a geographic information system. Weed Science, 45, 455–462.

    CAS  Google Scholar 

  • Cowan, T. F., Sindel, B. M., Jessop, R. S., & Browning, J. E. (2007). Mapping the distribution of Nasselta trichotoma (serrated tussock) with a view to improving detectability, containment and eradication. Crop Protection, 26, 228–231.

    Article  Google Scholar 

  • Economou, G., Bilalis, D., & Avgoulas, C. (2005). Weed flora distribution in Greek fields and its possible influence by herbicides. Phytoparasitica, 33, 406–419.

    Article  Google Scholar 

  • Everitt, J. H., Escobar, D. E., Villarreal, R., Alaniz, M. A., & Davis, M. R. (1993). Integration of airborne video, global positioning system and global positioning system technologies for detecting and mapping two woody legumes on rangelands. Weed Technology, 7, 981.

    Google Scholar 

  • Gaston, L. A., Locke, M. A., Zablotowicz, R. M., & Reddy, K. N. (2001). Spatial variability of soil properties and weed population in the Mississippi Delta. Soil Science Society of America Journal, 65, 449–459.

    CAS  Google Scholar 

  • General Secretariat of the National Statistical Service of Greece. (2004). Census of agricultural and livestock holding of the year 1999. Athens, Greece.

  • Gonzalez-Andujar, J. L., & Saavedra, M. (2003). Spatial distribution of annual grass weed populations in winter cereals. Crop Protection, 22, 629–633.

    Article  Google Scholar 

  • Hausler, A., & Nordmeyer, H. (1995). Impact of soil properties on weed distribution. In: Proceedings Seminar on Site-specific Farming (Koldkñrgaard, Aarhus, Denmark). Ministry of Agriculture and Fisheries, Danish Institute of Plant and Soil Science. SP Report, 26, 186–189.

  • Heisel, T., Ersboll, A. K., & Andreasen, C. (1999). Weed mapping with co-kriging using soil properties. Precision Agriculture, 1, 39–52.

    Article  Google Scholar 

  • Hidalgo, B., Saavedra, M., & Garcia-Torres, L. (1990). Weed flora of dryland crops in the Cordoba region (Spain). Weed Research, 30, 309–318.

    Article  Google Scholar 

  • Jurado-Exposito, M., Lopez-Granados, F., Gonzalez-Andujar, J. L., Garcia-Torres, L., Garcia-Ferrer, A., Sanchez de la Orden, M., et al. (2003). Multi-species weed spatial variability and site specific management maps in cultivated sunflower. Weed Science, 51, 319–328.

    Article  CAS  Google Scholar 

  • Jurado-Exposito, M., Lopez-Granados, F., Gonzalez-Andujar, J. L., & Garcia-Torres, L. (2004). Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. European Journal of Agronomy, 21, 287–296.

    Article  Google Scholar 

  • Kohel, R. J., & Lewis, C. F. [Eds.] (1984). Cotton. Agronomy Monograph No. 24. Madison, WI, USA: American Society of Agronomy Inc.

  • Lass, L. W., & Callihan, R. H. (1998). The effect of phenological stage on detectability of yellow hawkweed (Hieracium pratense) and oxeye daisy (Chrysanthemum leucanthemum) with remote multispectral digital imagery. Weed Technology, 11, 248.

    Google Scholar 

  • Meissner, R., Nel, P. C., & Bayers, E. A. (1989). Allelopathic effect of Cynodon dactylon infested soil on early growth of certain species. Applied Plant Science, 3, 125–126.

    Google Scholar 

  • Moran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23.

    CAS  PubMed  Google Scholar 

  • Mueller-Warrant, W. G., Whittaker, G. R., & Young, W. C. (2008). GIS analysis of spatial clustering and temporal change in weeds of grass seed crops. Weed Science, 56, 647–669.

    Article  CAS  Google Scholar 

  • Nordmeyer, H., & Dunker, M. (1999). Variable weed densities band soil properties in a weed mapping concept for patchy weed control. In: Proceedings Second European Conference on Precision Agriculture (Odense, Denmark), pp. 453–462.

  • Rew, L. J., & Cousens, R. D. (2001). Spatial distribution of weeds in arable crops: are current research methods appropriate? Weed Research, 41, 1–18.

    Article  Google Scholar 

  • Saavedra, M., Garcia-Torres, L., Hernandez-Bermejo, E., & Hidalgo, B. (1989). Weed flora in the middle valley of the Guadalquivir, Spain. Weed Research, 29, 167–179.

    Article  Google Scholar 

  • Smith, C. W., & Cothren, J. T. (1999). Cotton–origin, history, technology and production. Wiley Series in Crop Science. New York, NY: John Wiley & Sons Inc.

  • Soil Survey Staff. (1975). Soil taxonomy: a basic system of soil classification for mapping and interpreting soil surveys. Washington, DC: U.S. Department of Agriculture. Agriculture Handbook 436.

  • Sutton, K. F., Lanini, W. T., Mitchell, J. P., Miyao, E. M., & Shrestha, A. (2006). Weed control, yield, and quality of processing tomato production under different irrigation, tillage, and herbicide systems. Weed Technology, 20, 831–838.

    Article  Google Scholar 

  • Swetnam, R. D., Firbank, L. G., Ellis, N. E., & Hill, M. O. (1998). A geographic information system for predicting weed changes on set-aside arable land. Weed Technology, 12, 53.

    Google Scholar 

  • Vasilakoglou, I., Dhima, K., & Eleftherohorinos, I. (2005). Allelopathic potential of bermudagrass and johnsongrass and their interference with cotton and corn. Agronomy Journal, 97, 303–312.

    Google Scholar 

  • Walter, M. A., Christensen, S., & Simmelsgaard, S. E. (2002). Spatial correlation between weed species densities and soil properties. Weed Research, 42, 26–38.

    Article  Google Scholar 

  • Williams, M. M., Mortensen, D. A., Waltman, W. J., & Martin, R. A. (2002). Spatial inference of herbicide bioavailability using a geographic information system. Weed Technology, 16, 603–611.

    Article  Google Scholar 

  • Wilson, J. P., Inskeep, W. P., Rubright, P. R., Cooksey, D., Jacobsen, J. S., & Snyder, R. D. (1993). Coupling geographic information systems and models for weed control and groundwater protection. Weed Technology, 7, 255.

    Google Scholar 

  • Yassoglou, N. J., Nychas, A., & Kosmas, C. (1982). Parametric designation of mapping units for soil survey and evaluation in Greece based on soil taxonomy. Anaheim, CA, USA: American Society of Agronomy Annual Meetings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionissios P. Kalivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalivas, D.P., Economou, G. & Vlachos, C.E. Using geographic information systems to map the prevalent weeds at an early stage of the cotton crop in relation to abiotic factors. Phytoparasitica 38, 299–312 (2010). https://doi.org/10.1007/s12600-010-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-010-0101-0

Keywords

Navigation