Skip to main content
Log in

Evaluating potassium phosphonate injections for the control of Quercus ilex decline in SW Spain: implications of low soil contamination by Phytophthora cinnamomi and low soil water content on the effectiveness of treatments

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The Iberian forests are suffering severe disease and mortality as a result of decline, with Quercus ilex the major species at risk. Trunk injections with potassium phosphonate, which have been used successfully to control Phytophthora cinnamomi, were tested against decline. In an area in which P. cinnamomi was isolated, Q. ilex trees showing different degrees of decline were trunk-injected. Soil properties, and measurements of soil water content (θ) and depth to soil water table were assessed at three sites with markedly different decline incidences. Over the 5 years following the initiation of the experiment, mean symptoms among spring-treated trees and autumn-treated trees, or among trees injected twice a year (spring and autumn), once a year, and non-injected, were not significantly different. No effects of the treatments on shoot growth and acorn production were observed. However, θ values under trees which recovered from decline were higher than θ values under trees which did not recover from decline. At the site with the highest incidence of decline and tree mortality, P. cinnamomi was rarely isolated, and the presence of gravel, soil infiltration capacities and water table depth values were significantly higher than at the other sites, water stress being more likely to contribute to decline than P. cinnamomi. In areas in which θ is low, the distribution of phosphonate on the tree would be limited. Since the thresholds for phytotoxicity of potassium phosphonate in Q. ilex trees at the site studied would be higher than the amounts used, rates of the chemical slightly less than those that cause phytotoxicity should be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balci, Y., & Halmschlager, E. (2003). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52, 694–702.

    Article  Google Scholar 

  • Biosca, E. G., González, R., López-López, M. J., Soria, S., Montón, C., Pérez-Laorga, E., et al. (2003). Isolation and characterization of Brenneria quercina, causal agent for bark canker and drippy nut of Quercus spp. in Spain. Phytopathology, 93, 485–492.

    Article  PubMed  Google Scholar 

  • Bower, H. (1986). Intake rate: Cylinder infiltrometer. In A. Klute (Ed.), Methods of soil analysis. Part 1 (pp. 825–844). Madison, WI, USA: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Brasier, C. M. (1992). Oak tree mortality in Iberia. Nature, 360, 539.

    Article  Google Scholar 

  • Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in Southern Europe. Environmental constraints, including climate change. Annales des Sciences Forestières, 53, 347–358.

    Article  Google Scholar 

  • Brasier, C. M., Robredo, F., & Ferraz, J. F. P. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140–145.

    Article  Google Scholar 

  • Chin, D. A. (2008). Phenomenological models of hydrologic processes in south Florida. Journal of Hydrology, 349, 230–243.

    Article  Google Scholar 

  • Cordón, S., Bravo, V., Tapias, R., López, G., & Sánchez, I. (2001). Efecto de las inyecciones de fosfonato potásico en el tronco de encina (Quercus ilex subsp ballota) sobre el crecimiento de ramillas y la fructificación. Proc. of the Third Spanish Forest Congress (Granada, Spain), 6, 111–115.

    Google Scholar 

  • Cubera, E., & Moreno, G. (2007). Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Annals of Forest Science, 64, 355–364.

    Article  Google Scholar 

  • Cubera, E., Moreno, G., & Solla, A. (2009). Quercus ilex root growth in response to heterogeneous conditions of soil bulk density and soil NH4-N content. Soil & Tillage Research, 103, 16–22.

    Article  Google Scholar 

  • Diczbalis, Y., Vawdrey, L., Alvero, G., Campagnolo, D., Van Thanh, H., Van Tri, M., et al. (2004). Durian tree phenology and the control of Phytophthora diseases of durian using phosphonate trunk injection. In A. Drenth & D. I. Guest (Eds.), Diversity and Management of Phytophthora in Southeast Asia. (pp. 206–216). Canberra, Australia: Australian Centre for International Agricultural Research.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St Paul, MN, USA: APS.

    Google Scholar 

  • Fernández-Escobar, R., Gallego, F. J., Benlloch, M., Membrillo, J., Infante, J., & Pérez de Algaba, A. (1999). Treatment of oak decline using pressurized injection capsules of antifungal materials. European Journal of Forest Pathology, 29, 29–38.

    Article  Google Scholar 

  • Gallego, F. J., Pérez de Algaba, A., & Fernández-Escobar, R. (1999). Etiology of oak decline in Spain. European Journal of Forest Pathology, 29, 17–27.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1 (pp. 383–411). Madison, WI, USA: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Guest, D., & Grant, B. (1991). The complex action of phosphonates as antifungal agents. Biological Reviews, 66, 159–187.

    Article  Google Scholar 

  • Guest, D. I., Pegg, K. G., & Whiley, A. W. (1995). Control of Phytophthora diseases of tree crops using trunk-injected phosphonates. Horticultural Reviews, 17, 299–330.

    Google Scholar 

  • Hardy, G. E., St, J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30, 133–139.

    Article  Google Scholar 

  • Jeffers, N. S., & Martin, J. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.

    Article  Google Scholar 

  • Jiménez, J. J., Sánchez, J. E., Romero, M. A., Belbahri, L., Trapero, A., Lefort, F., et al. (2008). Pathogenicity of Pythium spiculum and P. sterilum on feeder roots of Quercus rotundifolia. Plant Pathology, 57, 369.

    Article  Google Scholar 

  • Jung, T., Blaschke, H., & Neumann, P. (1996). Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. European Journal of Forest Pathology, 26, 253–272.

    Article  Google Scholar 

  • Jung, T., Blaschke, H., & Oßwald, W. (2000). Involvement of Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology, 49, 706–718.

    Article  Google Scholar 

  • Montero, M. J., Moreno, G., & Bertomeu, M. (2008). Light distribution in scattered-trees open woodlands in western Spain. Agroforestry Systems, 73, 233–244.

    Article  Google Scholar 

  • Moreira, A. C., Ferraz, J. F. P., & Clegg, J. (2000). The involvement of Phytophthora cinnamomi in cork and holm oak decline in Portugal. In E. M. Hansen & W. Sutton (Eds.), Phytophthora in Forest and Wildland Ecosystems (pp. 132–135). Corvallis, OR, USA: Forest Research Laboratory, Oregon State University.

    Google Scholar 

  • Moreira, A. C., & Martins, J. M. S. (2005). Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. Forest Pathology, 35, 145–162.

    Article  Google Scholar 

  • Moreno, G., & Cubera, E. (2008). Impact of stand density on water status and leaf gas exchange in Quercus ilex. Forest Ecology and Management, 254, 78–84.

    Article  Google Scholar 

  • Moreno, G., & Obrador, J. J. (2007). Effects of trees and understorey management on soil fertility and nutritional status of holm oaks in Spanish dehesas. Nutrient Cycling in Agroecosystems, 78, 253–264.

    Article  CAS  Google Scholar 

  • Oosterbaan, A., & Nabuurs, G. J. (1991). Relationships between oak decline and groundwater class in The Netherlands. Plant and Soil, 136, 87–93.

    Article  Google Scholar 

  • Opoku, I. Y., Akrofi, A. Y., & Appiah, A. A. (2007). Assessment of sanitation and fungicide application directed at cocoa tree trunks for the control of Phytophthora black pod infections in pods growing in the canopy. European Journal of Plant Pathology, 117, 167–175.

    Article  CAS  Google Scholar 

  • Paul, B., Bala, K., Belbahri, L., Calmin, G., Sánchez-Hernández, E., & Lefort, F. (2006). A new species of Pythium with ornamented oogonia: morphology, taxonomy, ITS region of its rDNA, and its comparison with related species. FEMS Microbiology Letters, 254, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Porras, C. J., Pérez, J. L., Brun, P., Casas, C., Copete, J., & Pérez, R. (2007). Resultados de la aplicación de inyecciones en tronco para la lucha contra la seca de encinas. Cerdo Ibérico, 17, 79–85.

    Google Scholar 

  • Pulido, F. J., & Díaz, M. (2005). Regeneration of a Mediterranean oak: a whole-cycle approach. EcoScience, 12, 92–102.

    Article  Google Scholar 

  • Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., & Shirmohammadi, A. (1993). Infiltration and soil water movement. In D. R. Maidment (Ed.), Handbook of hydrology (pp. 5.1–5.51). New York: McGraw-Hill.

    Google Scholar 

  • Robin, C., Desprez-Loustau, M. L., Capron, G., & Delatour, C. (1998). First record of Phytophthora cinnamomi on cork and holm oaks in France and evidence of pathogenicity. Annales des Sciences Forestières, 55, 869–883.

    Article  Google Scholar 

  • Rodríguez-Molina, M. C., Blanco-Santos, A., Palo-Núnez, E. J., Torres-Vila, L. M., Torres-Álvarez, E., & Suárez-de-la-Cámara, M. A. (2005). Seasonal and spatial mortality patterns of holm oak seedlings in a reforested soil infected with Phytophthora cinnamomi. Forest Pathology, 35, 411–422.

    Article  Google Scholar 

  • Romero, M. A., Sánchez, J. E., Jiménez, J. J., Belbahri, L., Trapero, A., Lefort, F., et al. (2007). New Pythium taxa causing root rot on Mediterranean Quercus species in south–west Spain and Portugal. Journal of Phytopathology, 155, 289–295.

    Article  Google Scholar 

  • Sánchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.

    Article  Google Scholar 

  • Sánchez, M. E., Caetano, P., Ferraz, J., & Trapero, A. (2002). Phytophthora disease of Quercus ilex in south–western Spain. Forest Pathology, 32, 5–18.

    Article  Google Scholar 

  • Sánchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In C. Brasier, T. Jung & W. Oßwald (Eds.), Progress in research on Phytophthora diseases of forest trees (pp. 149–154). Farnham, Surrey, UK: Forest Research.

    Google Scholar 

  • Sánchez, M. E., Sánchez, J. E., Navarro, R. M., Fernández, P., & Trapero, A. (2003). Incidencia de la podredumbre radical causada por Phytophthora cinnamomi en masas de Quercus en Andalucía. Boletín de Sanidad Vegetal–Plagas, 29, 87–108.

    Google Scholar 

  • Shearer, B. L., Fairman, R. G., & Grant, M. J. (2006). Effective concentration of phosphite in controlling Phytophthora cinnamomi following stem injection of Banksia species and Eucalyptus marginata. Forest Pathology, 36, 119–135.

    Article  Google Scholar 

  • Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, J. M. (1996). Implicación de Phytophthora cinnamomi Rands en la enfermedad de la seca de encinas y alcornoques. Boletín de Sanidad Vegetal–Plagas, 22, 491–499.

    Google Scholar 

  • Tuset, J. J., & Sánchez, G. (2004). La seca: El decaimiento de encinas, alcornoques y otros Quercus en España. Madrid: Ediciones Mundi Prensa.

    Google Scholar 

  • Vettraino, A. M., Barzanti, G. P., Bianco, M. C., Ragazzi, A., Capretti, P., Paoletti, E., et al. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32, 19–28.

    Article  Google Scholar 

  • Whiley, A. W., Hargreaves, P. A., Pegg, K. G., Doogan, V. J., Ruddle, J. B., Saranah, J. B., et al. (1995). Changing sink strength influences translocation of phosphonate in avocado (Persea americana Mill.) trees. Australian Journal of Agricultural Research, 46, 1079–1090.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Fernando Pulido (Universidad de Extremadura) for advice on the experimental design, Francisco Miguel Martín and Marta Company for technical assistance, and Dr. Mª Carmen Rodríguez-Molina (Centro de Investigación Finca La Orden), Dr. Mª Ángeles Romero, Dr. Mª Esperanza Sánchez and Prof. Antonio Trapero (Universidad de Córdoba) for their help in pathogen isolation. We also thank Marqués de Valduezar, the owner of the land. Funding was provided by Universidad de Extremadura, I Plan de Iniciación, 2005. Elena Cubera was awarded a grant by Consejería de Infraestructuras y Desarrollo Tecnológico (Junta de Extremadura) and Fondo Social Europeo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Solla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solla, A., García, L., Pérez, A. et al. Evaluating potassium phosphonate injections for the control of Quercus ilex decline in SW Spain: implications of low soil contamination by Phytophthora cinnamomi and low soil water content on the effectiveness of treatments. Phytoparasitica 37, 303–316 (2009). https://doi.org/10.1007/s12600-009-0042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-009-0042-7

Keywords

Navigation