Skip to main content
Log in

Wand and Weber’s Decomposition Model in the Context of Business Process Modeling

  • State of the Art
  • Published:
Business & Information Systems Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 31 October 2012

Abstract

Whereas the benefits of decomposing process models are obvious, the question what actually characterizes a “good” decomposition of a business process model has been given little attention to date. In addition, the process of decomposition itself is considered as being an “art” in literature. Our approach for achieving a “good” decomposition is Wand and Weber’s decomposition model for information systems. As a first step in our investigation we aim to explore in how far the decomposition model can be adapted for business process modeling at all. The potential this model might bear for evaluating decompositions of process models has been promoted in literature quite often, while a corresponding investigation is still missing. We address this gap by the following research. In the long term, we intend to establish guidelines for decomposing business process models in a structured way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Since a user may consider a composition of selected subprocesses within the set only, the union of all compositions is necessary for representing the holistic process.

  2. For reasons of comprehensibility we omitted the intermediate event types.

References

  • Balzert H (2009) Lehrbuch der Softwaretechnik, 3rd edn. Spektrum, Heidelberg

    Book  Google Scholar 

  • Becker J (1995) Strukturanalogien in Informationsmodellen: Ihre Definition, ihr Nutzen und ihr Einfluß auf die Bildung von Grundsätzen ordnungsmäßiger Modellierung (GoM). In: König W (ed) Wirtschaftsinformatik 95: Wettbewerbsfähigkeit, Innovation, Wirtschaftlichkeit. Physica, Heidelberg, pp 133–150

    Google Scholar 

  • Becker J, Thome I, WeißB, Winkelmann A (2010) Constructing a semantic business process modeling language for the banking sector. Enterprise Modelling and Information Systems Architectures 5(1):4–25

    Google Scholar 

  • Bobrik R, Reichert M, Bauer T (2007) View-based process visualization. Lecture Notes in Computer Science 4714:88–95

    Article  Google Scholar 

  • Burton-Jones A, Meso P (2002) How good are these UML diagrams? An empirical test of the Wand and Weber good decomposition model. In: Proc 23rd international conference on information systems (ICIS), pp 101–114

    Google Scholar 

  • Burton-Jones A, Meso P (2006) Conceptualizing systems for understanding: an empirical test of decomposition principles in object-oriented analysis. Information Systems Research 17(1):38–60

    Article  Google Scholar 

  • Burton-Jones A, Meso PN (2008) The effects of decomposition quality and multiple forms of information on novices’ understanding of a domain from a conceptual model. Journal of the Association for Information Systems 9(12):748–802

    Google Scholar 

  • Davis R (2001) Business process modeling with ARIS. Springer, London

    Book  Google Scholar 

  • Davis R, Brabänder E (2007) ARIS design platform: getting started with BPM. Springer, London

    Google Scholar 

  • Decker G, Mendling J (2009) Process instantiation. Data & Knowledge Engineering 68(9):777–792

    Article  Google Scholar 

  • Dromey G (1996) Cornering the chimera. IEEE Software 13(1):33–43

    Article  Google Scholar 

  • Fettke P, Loos P (2007) Ontological evaluation of Scheer’s reference model for production planning and control systems. Journal of Interoperability in Business Information Systems 2(1):9–28

    Google Scholar 

  • Green P, Rosemann M (2000) Integrated process modeling: an ontological evaluation. Information Systems 25(2):73–87

    Article  Google Scholar 

  • Green P, Rosemann M (2001) Ontological analysis of integrated process models: testing hypotheses. Australasian Journal of Information Systems 9(1):30–38

    Google Scholar 

  • Gruhn V, Laue R (2007) Approaches for business process model complexity metrics. In: Abramowicz W, Mayr HC (eds) Technologies for business information systems. Springer, Heidelberg, pp 13–24

    Chapter  Google Scholar 

  • Heinrich B, Henneberger M, Leist S, Zellner G (2009) The process map as an instrument to standardize processes: design and application at a financial service provider. Information Systems and E-Business Management 7(1):81–102

    Article  Google Scholar 

  • Hoffmann W, Wein R, Schweer A-W (1993) Konzeption eines Steuerungsmodells für Informationssysteme – Basis für die Real-Time-Erweiterung der EPK (rEPK). IWI-Heft 106, Institut für Wirtschaftsinformatik, Universität Saarbrücken

  • Keller G, Nüttgens M, Scheer A-W (1992) Semantische Prozeßmodellierung auf der Grundlage Ereignisgesteuerter Prozeßketten (EPK). IWI-Heft 89, Institut für Wirtschaftsinformatik, Universität Saarbrücken

  • Kindler E (2006) On the semantics of EPCs. Data & Knowledge Engineering 56(1):23–40

    Article  Google Scholar 

  • Krogstie J, Lindland OI, Sindre G (1995) Towards a deeper understanding of quality in requirements engineering. In: Proc 7th conference on advanced information systems engineering (CaiSE ’95), pp 82–95

    Google Scholar 

  • La Rosa M, Wohed P, Mendling J, ter Hofstede AHM, Reijers HA, van der Aalst WMP (2011) Managing process model complexity via abstract syntax modifications. IEEE Transactions on Industrial Informatics 7(4):614–629

    Article  Google Scholar 

  • Malone TW, Crowston K, Lee J, Pentland B, Dellarocas C, Wyner G, Quimby J, Osborn CS, Bernstein A, Herman G, Klein M, Donnell EO (1999) Tools for inventing organizations: toward a handbook of organizational processes. Management Science 45(3):425–443

    Article  Google Scholar 

  • Mendling J (2008) Metrics for process models – empirical foundations of verification, error prediction, and guidelines for correctness. Springer, Heidelberg

    Google Scholar 

  • Mendling J, Reijers H, van der Aalst W (2010) Seven process modeling guidelines. Information and Software Technology 52(2):127–136

    Article  Google Scholar 

  • Mendling J, Reijers HA, Cardoso J (2007) What makes process models understandable? Lecture Notes in Computer Science 4714:48–63

    Article  Google Scholar 

  • Mesarovic MD, Macko D, Takahara Y (1970) Theory of hierarchical, multilevel, systems. Academic Press, New York

    Google Scholar 

  • Moody DL, Flitman AR (2000) A decomposition method for entity relationship models: a systems theoretic approach. In: Proc 1st international conference on systems thinking in management, pp 462–469

    Google Scholar 

  • Österle H (1995) Business Engineering – Prozesse- und Systementwicklung – Band 1: Entwurfstechniken, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Paulson D, Wand Y (1992) An automated approach to information systems decomposition. IEEE Transactions on Software Engineering 18(3):174–189

    Article  Google Scholar 

  • Polyvyanyy A, Smirnov S, Weske M (2008) Process model abstraction: a slider approach. In: EDOC 2008, pp 325–331

    Google Scholar 

  • Recker J, Indulska M (2007) An ontology-based evaluation of process modeling with Petri nets. Journal of Interoperability in Business Information Systems 2(1):45–64

    Google Scholar 

  • Recker J, Indulska M, Rosemann M, Green P (2005) Do process modeling techniques get better? A comparative ontological analysis of BPMN. In: Proc 16th Australasian conference on information systems, Sydney

    Google Scholar 

  • Recker J, Rosemann M, Krogstie J (2007) Ontology- versus pattern-based evaluation of process modeling languages: a comparison. Communications of the Association for Information Systems 20(48):774–799

    Google Scholar 

  • Recker J, Rosemann M, Indulska M, Green P (2009) Business process modeling: a comparative analysis. Journal of the Association for Information Systems 10(4):333–363

    Google Scholar 

  • Reijers HA (2003) A cohesion metric for the definition of activities in a workflow process. In: Eighth CAiSE/IFIP8.1 international workshop on evaluation of modeling methods in systems analysis and design, pp 116–125

    Google Scholar 

  • Reijers HA, Mendling J (2008) Modularity in process models: review and effects. Lecture Notes in Computer Science 5240:20–35

    Article  Google Scholar 

  • Reijers HA, Vanderfeesten ITP (2004) Cohesion and coupling metrics for workflow process design. Lecture Notes in Computer Science 3080:290–305

    Article  Google Scholar 

  • Reijers HA, Mendling J, Dijkman RM (2011) Human and automatic modularizations of process models to enhance their comprehension. Information Systems 36(5):881–897

    Article  Google Scholar 

  • Rosemann M, Green P (2000) Integrating multi-perspective views into ontological analysis. In: Proc 21st international conference on information systems, Brisbane, Australia, pp 618–627

    Google Scholar 

  • Rosemann M, Green P (2002) Developing a meta model for the Bunge–Wand–Weber ontological constructs. Information Systems 27(2):75–91

    Article  Google Scholar 

  • Rosemann M, Green P, Indulska M (2004) A reference methodology for conducting ontological analyzes. Lecture Notes in Computer Science 3288:110–121

    Article  Google Scholar 

  • Rosemann M, Green P, Indulska M, Recker JC (2009) Using ontology for the representational analysis of process modeling techniques. International Journal of Business Process Integration and Management Decision 4(4):251–265

    Article  Google Scholar 

  • Scheer AW (2001) ARIS – Modellierungsmethoden – Metamodelle – Anwendungen. Springer, Berlin

    Google Scholar 

  • Scheer AW, Thomas O, Adam O (2005) Process modeling using event-driven process chains. In: Dumas M, van der Aalst W, Hofstede AT (eds) Process-aware information systems. Wiley, New Jersey, pp 119–146

    Chapter  Google Scholar 

  • Schütte R, Rotthowe T (1998) The guidelines of modeling – an approach to enhance the quality in information models. Lecture Notes in Computer Science 1507:240–254

    Article  Google Scholar 

  • Smirnov S, Dijkman R, Mendling J, Weske M (2010a) Meronymy-based aggregation of activities in business process models. Lecture Notes in Computer Science 6412:1–14

    Article  Google Scholar 

  • Smirnov S, Weidlich M, Mendling J (2010b) Business process model abstraction based on behavioral profiles. Lecture Notes in Computer Science 6470:1–16

    Article  Google Scholar 

  • Smirnov S, Reijers HA, Weske M (2011) A semantic approach for business process model abstraction. Lecture Notes in Computer Science 6741:497–511

    Article  Google Scholar 

  • van der Aalst WMP, Desel J, Kindler E (2002) On the semantics of EPCs: a vicious circle. In: EPK 2002 – business process management using EPCs, Trier, pp 71–80

    Google Scholar 

  • Vanderfeesten I, Cardoso J, Reijers HA (2007a) A weighted coupling metric for business process models. In: Proc of the CAiSE 2007, pp 41–44

    Google Scholar 

  • Vanderfeesten I, Reijers HA, Mendling J, van der Aalst WMP, Cardoso J (2008a) On a quest for good process models: the cross-connectivity metric. Lecture Notes in Computer Science 5074:480–494

    Article  Google Scholar 

  • Vanderfeesten I, Reijers HA, van der Aalst WMP (2008b) Evaluating workflow process designs using cohesion and coupling metrics. Computers in Industry 59(5):420–437

    Article  Google Scholar 

  • Vanderfeesten ITP, Cardoso J, Mendling J, Reijers HA, van der Aalst WMP (2007b) Quality metrics for business process models. In: Fischer L (ed) BPM and workflow handbook 2007: future strategies, pp 179–190

    Google Scholar 

  • Vanhatalo J, Völzer H, Koehler J (2008) The refined process structure tree. Lecture Notes in Computer Science 5240:100–115

    Article  Google Scholar 

  • Vanhatalo J, Völzer H, Leymann F (2007) Faster and more focused control-flow analysis for business process models through SESE decomposition. Lecture Notes in Computer Science 4749:43–55

    Article  Google Scholar 

  • vom Brocke J (2006) Design principles for reference modeling – reusing information models by means of aggregation, specialisation, instantiation, and analogy. In: Fettke P, Loos P (eds) Reference modeling for business systems analysis. Idea Group, Hershey, pp 47–76

    Chapter  Google Scholar 

  • Wand Y, Weber R (1989) A model of systems decomposition. In: Proc 10th international conference on information systems, Boston, pp 42–51

    Google Scholar 

  • Wand Y, Weber R (1990) Toward a theory of the deep structure of information systems. In: Proc international conference on information systems, Copenhagen, Denmark, pp 61–71

    Google Scholar 

  • Weber R (1997) Ontological foundations of information systems. Coopers & Lybrand, Queensland

    Google Scholar 

  • Yourdon E (1989) Modern structured analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Johannsen.

Additional information

Accepted after three revisions by Prof. Dr. Buxmann.

This article is also available in German in print and via http://www.wirtschaftsinformatik.de: Johannsen F, Leist S (2012) Das Dekompositionsmodell nach Wand und Weber im Kontext der Prozessmodellierung. WIRTSCHAFTSINFORMATIK. doi: 10.1007/s11576-012-0334-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannsen, F., Leist, S. Wand and Weber’s Decomposition Model in the Context of Business Process Modeling. Bus Inf Syst Eng 4, 271–286 (2012). https://doi.org/10.1007/s12599-012-0229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12599-012-0229-1

Keywords

Navigation