Skip to main content
Log in

Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal oxide semiconductor heterojunctions (MOSHs) can enhance the performance of ethanol gas sensors substantially. Ethanol gas sensors based on MOSHs are cost-effective and have excellent sensing response, good selectivity, fast response and recovery, long-term stability or repeatability, a low operating temperature, a facile fabrication process, and versatile applications. This paper reviews the recent advances in gas sensors that are based on MOSHs and the advantages of using them to detect ethanol gas. According to the literature, compared with ethanol gas sensors that use single-component sensing materials, the MOSHs exhibit superior performance due to the synergy between the different components, which can amplify the reception and transduction components of the sensor signals. To the best of our knowledge, heterojunctions can be grouped into four main categories as metal oxide/metal oxide, metal oxide/metal sulfide, metal oxide/noble metal, and metal oxide/other materials, including rare-earth metals, g-C3N4, and graphene, heterojunctions. The future trends and challenges that would be faced in the development of ethanol gas sensors based on MOSHs are discussed in detail. Finally, critical ideas and thinking regarding the future progress of MOSH-based gas sensors are presented.

Graphical abstract

摘要

金属氧化物半导体异质结 (MOSH) 可以显著提高乙醇气体传感器的传感性能。基于MOSH的乙醇气体传感器具有以下特点: 易制备, 低成本, 在低温下响应高, 选择性好, 响应/恢复速度快, 稳定性好, 应用广泛。本文总结归纳了MOSH乙醇气体传感器的最新研究进展和优势。根据文献报道, 与基于单组分敏感材料的乙醇气体传感器相比, 由于不同组分之间的协同效应, MOSH可以增强接收和传导信号, 进而提高气体传感器的传感性质。据我们所知, MOSH大致分为以下四类: 1、金属氧化物/金属氧化物异质结; 2、金属氧化物/金属硫化物异质结; 3、金属氧化物/贵金属异质结; 4、金属氧化物/其他材料 (稀土、g-C3N4、石墨烯) 异质结。另外, 本文还详细讨论了基于MOSH乙醇气体传感器未来的发展方向和挑战。最后, 对基于MOSH气体传感器的发展前景提出了一些想法和思考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [63]. Copyright 2021, Elsevier

Fig. 2
Fig. 3

Reproduced with permission from Ref. [115]. Copyright 2020, Elsevier

Fig. 4

Reproduced with permission from Ref. [95]. Copyright 2020, Elsevier

Fig. 5

Reproduced with permission from Ref. [46]. Copyright 2020, Elsevier

Fig. 6

Reproduced with permission from Ref. [127]. Copyright 2019, Elsevier

Fig. 7

Reproduced with permission from Ref. [60]. Copyright 2020, Elsevier

Fig. 8

Reproduced with permission from Ref. [29]. Copyright 2021, Elsevier

Fig. 9

Reproduced with permission from Ref. [152]. Copyright 2018, Elsevier

Fig. 10

Reproduced with permission from Ref. [102]. Copyright 2020, Elsevier

Fig. 11

Reproduced with permission from Ref. [156]. Copyright 2021, Elsevier

Fig. 12

Reproduced with permission from Ref. [168]. Copyright 2018, Elsevier

Fig. 13

Reproduced with permission from Ref. [169]. Copyright 2019, American Chemical Society

Fig. 14

Reproduced with permission from Ref. [170]. Copyright 2021, Springer

Similar content being viewed by others

References

  1. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459.

    Article  CAS  Google Scholar 

  2. Chen ZL, Wang D, Wang XY, Yang JH. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 2021;40(6):1561.

    Article  CAS  Google Scholar 

  3. Zhang Y, Zhang J, Jiang Y, Duan Z, Liu B, Zhao Q, Wang S, Yuan Z, Tai H. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sens Actuators B Chem. 2020;319:128293.

    Article  CAS  Google Scholar 

  4. Yu X, Li Y, Cheng J, Liu Z, Li Q, Li W, Yang X, Xiao B. Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces. 2015;7(24):13707.

    Article  CAS  Google Scholar 

  5. Wang S, Liu B, Duan Z, Zhao Q, Zhang Y, Xie G, Jiang Y, Li S, Tai H. PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sens Actuators B Chem. 2021;327:128923.

    Article  CAS  Google Scholar 

  6. Morrison R. Selectivity in semiconductor gas sensors. Sensors Actuators. 1987;12(4):425.

    Article  CAS  Google Scholar 

  7. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.

    Article  CAS  Google Scholar 

  8. Zhang FH, Wang YC, Wang L, Liu J, Ge HL, Wang B, Huan XY, Wang XD, Chi ZT, Xie WF. High performance In2(MoO4)3@In2O3 nanocomposites gas sensor with long-term stability. J Alloys Compd. 2019;805:180.

    Article  CAS  Google Scholar 

  9. Feng DL, Zhu ZY, Du LL, Xing XX, Wang C, Chen J, Tian YT, Yang DC. Improved sensing performance of WO3 nanoparticles decorated with Ag and Pt nanoparticles. Rare Met. 2021;40(6):1642.

    Article  CAS  Google Scholar 

  10. Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, Lou C, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415:125757.

    Article  CAS  Google Scholar 

  11. Wang P, Wang SZ, Kang YR, Sun ZS, Wang XD, Meng Y, Hong MH, Xie WF. Cauliflower-shaped Bi2O3-ZnO heterojunction with superior sensing performance towards ethanol. J Alloys Compd. 2021;854:157152.

    Article  CAS  Google Scholar 

  12. Zhang Y, Duan Z, Zou H, Ma M. Fabrication of electrospun LaFeO3 nanotubes via annealing technique for fast ethanol detection. Mater Lett. 2018;215:58.

    Article  CAS  Google Scholar 

  13. Chakraborty U, Bhanjana G, Adam J, Mishra YK, Kaur G, Chaudhary GR, Kaushik A. A flower-like ZnO–Ag2O nanocomposite for label and mediator free direct sensing of dinitrotoluene. RSC Adv. 2020;10(46):27764.

    Article  CAS  Google Scholar 

  14. Zhou Y, Ding Q, Li J, Wang Y, Wang B, Zhu W, OuYang X, Liu L, Wang Y. Enhanced sensing performance of TiO2/Ag2V4O11 nanoheterostructures to ethanol gas. J Alloys Compd. 2019;811:151958.

    Article  CAS  Google Scholar 

  15. Zhang T, Tang X, Zhang J, Zhou T, Wang H, Wu C, Xia X, Xie C, Zeng D. Metal-organic framework-assisted construction of TiO2/Co3O4 highly ordered necklace-like heterostructures for enhanced ethanol vapor sensing performance. Langmuir. 2018;34(48):14577.

    Article  CAS  Google Scholar 

  16. Hu ZD, Sun XY, Li HF, Kang YR, Song XQ, Wang P, Luan QT, Wang XD, Chi ZT, Xie WF. Cobalt monosulfide nanofibers: ethanol sensing and magnetic properties. Rare Met. 2021;40(6):1554.

    Article  CAS  Google Scholar 

  17. Mao JN, Hong B, Chen HD, Gao MH, Xu JC, Han YB, Yang YT, Jin HX, Jin DF, Peng XL. Highly improved ethanol gas response of n-type α-Fe2O3 bunched nanowires sensor with high-valence donor-doping. J Alloys Compd. 2020;827:154248.

    Article  CAS  Google Scholar 

  18. Na CW, Woo HS, Kim ID, Lee JH. Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem Commun. 2011;47(18):5248.

    Article  CAS  Google Scholar 

  19. Salimi kuchi P, Roshan H, Sheikhi MH. A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties. J Alloys Compd. 2020;816:152666.

    Article  CAS  Google Scholar 

  20. Kim W, Baek M, Yong K. Fabrication of ZnO/CdS, ZnO/CdO core/shell nanorod arrays and investigation of their ethanol gas sensing properties. Sens Actuators B Chem. 2016;223:599.

    Article  CAS  Google Scholar 

  21. Cai Z, Park S. Enhancement mechanisms of ethanol-sensing properties based on Cr2O3 nanoparticle-anchored SnO2 nanowires. J Mater Res Technol. 2020;9(1):271.

    Article  CAS  Google Scholar 

  22. Azzouz A, Vikrant K, Kim KH, Ballesteros E, Rhadfi T, Malik AK. Advances in colorimetric and optical sensing for gaseous volatile organic compounds. Trends Analyt Chem. 2019;118:502.

    Article  CAS  Google Scholar 

  23. Dolai S, Bhunia SK, Beglaryan SS, Kolusheva S, Zeiri L, Jelinek R. Colorimetric polydiacetylene-aerogel detector for volatile organic compounds (VOCs). ACS Appl Mater Interfaces. 2017;9(3):2891.

    Article  CAS  Google Scholar 

  24. Monosik R, Magdolen P, Stredansky M, Sturdik E. Monitoring of monosaccharides, oligosaccharides, ethanol and glycerol during wort fermentation by biosensors, HPLC and spectrophotometry. Food Chem. 2013;138(1):220.

    Article  CAS  Google Scholar 

  25. Alizadeh T, Rezaloo F. A new chemiresistor sensor based on a blend of carbon nanotube, nano-sized molecularly imprinted polymer and poly methyl methacrylate for the selective and sensitive determination of ethanol vapor. Sens Actuators B Chem. 2013;176(6):28.

    Article  CAS  Google Scholar 

  26. Villanueva S, Vegas A, Fernandez-Escudero JA, Iñiguez M, Rodríguez-Mendez ML, Saja J. SPME coupled to an array of MOS sensors reduction of the interferences caused by water and ethanol during the analysis of red wines. Sens Actuators B Chem. 2006;120(1):278.

  27. Banat FA, Abu Al-Rub FA, Simandl J. Analysis of vapor–liquid equilibrium of ethanol–water system via headspace gas chromatography: effect of molecular sieves. Sep Purif Technol. 2000;18(2):111.

    Article  CAS  Google Scholar 

  28. Wild R, Citterio D, Spichiger J, Spichige UE. Continuous monitoring of ethanol for bioprocess control by a chemical sensor. J Biotechnol. 1996;50(1):37.

    Article  CAS  Google Scholar 

  29. Zhao S, Shen Y, Hao F, Kang C, Cui B, Wei D, Meng F. p-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Appl Surf Sci. 2021;538(93):148140.

  30. Hui G, Zhu M, Yang X, Liu J, Pan G, Wang Z. Highly sensitive ethanol gas sensor based on CeO2/ZnO binary heterojunction composite. Mater Lett. 2020;278:128453.

    Article  CAS  Google Scholar 

  31. Wang YC, Sun ZS, Wang SZ, Wang SY, Cai SX, Huang XY, Li K, Chi ZT, Pan SD, Xie WF. Sub-ppm acetic acid gas sensor based on In2O3 nanofibers. J Mater Sci. 2019;54(3):14055.

  32. Felix AA, Silva RA, Orlandi MO. Layered α-MoO3 nanoplates for gas sensing applications. CrystEngComm. 2020;22(27):4640.

    Article  CAS  Google Scholar 

  33. Chang X, Li X, Qiao X, Li K, Xiong Y, Li X, Guo T, Zhu L, Xue Q. Metal-organic frameworks derived ZnO@MoS nanosheets core/shell heterojunctions for ppb-level acetone detection: ultra-fast response and recovery. Sens Actuators B Chem. 2020;304:127430.

    Article  CAS  Google Scholar 

  34. Roslyakov IV, Kolesnik IV, Evdokimov PV, Skryabina OV, Garshev AV, Mironov SM, Stolyarov VS, Baranchikov AE, Napolskii KS. Microhotplate catalytic sensors based on porous anodic alumina: operando study of methane response hysteresis. Sens Actuators B Chem. 2021;330:129307.

    Article  CAS  Google Scholar 

  35. Kalyakin AS, Medvedev DA, Volkov AN. Electrochemical sensors based on proton-conducting electrolytes for determination of concentration and diffusion coefficient of CO2 in inert gases. Chem Eng Sci. 2021;229:116046.

  36. Ueda T, Defferriere T, Hyodo T, Shimizu Y, Tuller HL. Nanostructured Pr-doped ceria (PCO) thin films as sensing electrodes in solid-electrolyte type gas sensors with enhanced toluene sensitivity. Sens Actuators B Chem. 2020;317:128037.

  37. Nakata S, Takahara N. Characteristic nonlinear responses of a semiconductor gas sensor to hydrocarbons and alcohols under the combination of cyclic temperature and continuous flow. Sens Actuators B Chem. 2020;307:127635.

    Article  CAS  Google Scholar 

  38. Berndt D, Muggli J, Wittwer F, Langer C, Heinrich S, Knittel T, Schreiner R. MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications. Sensors Actuators A Physical. 2020;305:111670.

    Article  CAS  Google Scholar 

  39. Wan H, Gan Y, Sun J, Liang T, Zhou S, Wang P. High sensitive reduced graphene oxide-based room temperature ionic liquid electrochemical gas sensor with carbon-gold nanocomposites amplification. Sens Actuators B Chem. 2019;299:126952.

    Article  CAS  Google Scholar 

  40. Fan T, Liu Z, Luo Z, Li J, Tian X, Chen Y, Feng Y, Wang C, Bi H, Li X. Analog sensing and computing systems with low power consumption for gesture recognition. Adv Intell Syst. 2020;3(1):2000184.

    Article  Google Scholar 

  41. Han Y, Liu Y, Su C, Chen X, Zeng M, Hu N, Su Y, Zhou Z, Wei H, Yang Z. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sens Actuators B Chem. 2020;306:127536.

    Article  CAS  Google Scholar 

  42. Su C, Zhang L, Han Y, Ren C, Zeng M, Zhou Z, Su Y, Hu N, Wei H, Yang Z. Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sens Actuators B Chem. 2020;304:127347.

    Article  CAS  Google Scholar 

  43. Zhang J, Yu Y, Wang P, Luo C, Wu X, Sun Z, Wang J, Hu WD, Shen G. Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat. 2019;1(1):85.

    Article  CAS  Google Scholar 

  44. Zhang QX, Ma SY, Zhang R, Tie Y, Pei ST. Optimization ethanol detection performance manifested by SnS/SnS2 nanoparticles. Mater Lett. 2020;258:126783.

    Article  CAS  Google Scholar 

  45. Xu H, Li W, Han R, Zhai T, Yu H, Chen Z, Wu X, Wang J, Cao B. Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens Actuators B Chem. 2018;262:70.

    Article  CAS  Google Scholar 

  46. Liu Y, Li X, Wang Y, Li X, Cheng P, Zhao Y, Dang F, Zhang Y. Hydrothermal synthesis of Au@SnO2 hierarchical hollow microspheres for ethanol detection. Sens Actuators B Chem. 2020;319:128299.

    Article  CAS  Google Scholar 

  47. Karnati P, Akbar S, Morris PA. Conduction mechanisms in one dimensional core-shell nanostructures for gas sensing: a review. Sens Actuators B Chem. 2019;295:127.

    Article  CAS  Google Scholar 

  48. Ren Y, Zou Y, Liu Y, Zhou X, Ma J, Zhao D, Wei G, Ai Y, Deng Y. Synthesis of orthogonally assembled 3D crossstacked metal oxide semiconducting nanowires. Nat Mater. 2020;19(2):203.

    Article  CAS  Google Scholar 

  49. Bai H, Guo H, Wang J, Dong Y, Liu B, Guo F, Chen D, Zhang R, Zheng Y. Hydrogen gas sensor based on SnO2 nanospheres modified with Sb2O3 prepared by one-step solvothermal route. Sens Actuators B Chem. 2021;331:129441.

    Article  CAS  Google Scholar 

  50. Yang Y, Wang X, Yi G, Li H, Shi C, Sun G, Zhang Z. Hydrothermal synthesis of Co3O4/ZnO hybrid nanoparticles for triethylamine detection. Nanomaterials. 2019;9(11):1599.

    Article  CAS  Google Scholar 

  51. Kang JY, Koo WT, Jang JS, Kim DH, Jeong YJ, Kim R, Ahn J, Choi SJ, Kim ID. 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sens Actuators B Chem. 2021;331:129371.

    Article  CAS  Google Scholar 

  52. Zhang J, Lu H, Lu H, Li G, Gao J, Yang Z, Tian Y, Zhang M, Wang C, He Z. Porous bimetallic Mo-W oxide nanofibers fabricated by electrospinning with enhanced acetone sensing performances. J Alloys Compd. 2019;779:531.

    Article  CAS  Google Scholar 

  53. Meng Z, Stolz RM, Mendecki L, Mirica KA. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev. 2019;119(1):478.

    Article  CAS  Google Scholar 

  54. Wang C, Wang ZG, Xi R, Zhang L, Zhang SH, Wang LJ, Pan GB. In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature. Sens Actuators B Chem. 2019;292:270.

    Article  CAS  Google Scholar 

  55. Jamalpoor N, Ghasemi M, Soleimanian V. Investigation of the role of deposition rate on optical, microstructure and ethanol sensing characteristics of nanostructured Sn doped In2O3 films. Mater Res Bull. 2018;106:49.

    Article  CAS  Google Scholar 

  56. Yamazoe N, Kurokawa Y, Seiyama T. Effects of additives on semiconductor gas sensors. Sensors and Actuators. 1983;4:283.

    Article  CAS  Google Scholar 

  57. Degler D, Weimar U, Barsan N. Current understanding of the fundamental mechanisms of doped and loaded semiconducting metal-oxide-based gas sensing materials. ACS Sens. 2019;4(9):2228.

    Article  CAS  Google Scholar 

  58. Dong Z, Liu H, Yang X, Fan J, Bi H, Wang C, Zhang Y, Luo C, Chen X, Wu X. Facile fabrication of paper-based flexible thermoelectric generator. NPJ Flexible Electron. 2021;5(1):6.

    Article  CAS  Google Scholar 

  59. Pan P, Zhang T, Yue Q, Elzatahry AA, Alghamdi A, Cheng X, Deng Y. Interface coassembly and polymerization on magnetic colloids: toward core-shell functional mesoporous polymer microspheres and their carbon derivatives. Adv Sci. 2020;7(12):2000443.

    Article  CAS  Google Scholar 

  60. Qin S, Tang P, Feng Y, Li D. Novel ultrathin mesoporous ZnO-SnO2 n-n heterojunction nanosheets with high sensitivity to ethanol. Sens Actuators B Chem. 2020;309:127801.

    Article  CAS  Google Scholar 

  61. Wang D, Yin Y, Xu P, Wang F, Wang P, Xu J, Wang X, Li X. Catalytic-induced sensing effect of triangular CeO2 nanoflakes for enhanced BTEX vapor detection with conventional ZnO gas sensors. J Mater Chem A. 2020;8:11188.

    Article  CAS  Google Scholar 

  62. Staerz A, Gao X, Cetmi F, Ming Z, Weimar U, Zhang T, Barsan N. Dominant role of heterojunctions in gas sensing with composite materials. ACS Appl Mater Interfaces. 2020;12(18):21127.

    Article  CAS  Google Scholar 

  63. Singh A, Sikarwar S, Verma A, Yadav BC. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens Actuators A Phys. 2021;332:113127.

    Article  CAS  Google Scholar 

  64. Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz. 2019;6(3):470.

    Article  CAS  Google Scholar 

  65. Barsan N, Schweizer-Berberich M, Gpel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem. 1999;365(4):287.

    Article  CAS  Google Scholar 

  66. Wang Q, Kou X, Liu C, Zhao L, Lin T, Liu F, Yang X, Lin J, Lu G. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor. J Colloid Interface Sci. 2018;513:760.

    Article  CAS  Google Scholar 

  67. Liu J, Wang T, Wang B, Sun P, Yang Q, Liang X, Song H, Lu G. Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens Actuators B Chem. 2017;245:551.

    Article  CAS  Google Scholar 

  68. Poonia E, Mishra PK, Kiran V, Sangwan J, Kumar R, Rai PK, Malik R, Tomer VK, Ahujag R, Mishra YK. Aero-gel based CeO2 nanoparticles: synthesis, structural properties and detailed humidity sensing response. J Mater Chem C. 2019;7(18):5477.

    Article  CAS  Google Scholar 

  69. Liu B, Xu Y, Li K, Wang H, Gao L, Luo Y, Duan G. Pd-catalyzed reaction-producing intermediate S on a Pd/In2O3 surface: a key to achieve the enhanced CS2-sensing performances. ACS Appl Mater Interfaces. 2019;11(18):16838.

  70. Wang L, Fu H, Jin Q, Jin H, Haick H, Wang S, Yu K, Deng S, Wang Y. Directly transforming SnS2 nanosheets to hierarchical SnO2 nanotubes: towards sensitive and selective sensing of acetone at relatively low operating temperatures. Sens Actuators B Chem. 2019;292:148.

    Article  CAS  Google Scholar 

  71. Thripuranthaka M, Neha S, Tilak D, Swapnil V, Satish SB, Musthafa OT, Mukul K, Satishchandra O. A combined experimental and computational study of gas sensing by Cu3SnS4 nanoparticulate film: high selectivity, stability, and reversibility for room temperature H2S sensing. Adv Mater Interfaces. 2018;5(10):1701492.

    Article  CAS  Google Scholar 

  72. Walker J, Karnati P, Miller DR, Al-Hashem M, Akbar SA, Morris PA. A new open-access online database for resistive-type gas sensor properties and performance. Sens Actuators B Chem. 2020;321:128591.

    Article  CAS  Google Scholar 

  73. Mishra RK, Choi GJ, Mishra YK, Kaushik A, Sohn Y, Lee SH, Gwag JS. A highly stable, selective, and high-performance VOC sensor using a SnS2 nano-lotus structure. J Mater Chem C. 2021;9(24):7713.

    Article  CAS  Google Scholar 

  74. Liu C, Xu H, Chen Z, Ye Q, Wu X, Wang J, Cao B. Enhanced triethylamine sensing properties by designing an α-Fe2O3/α-MoO3 nanostructure directly grown on ceramic tubes. ACS Appl Nano Mater. 2019;2(10):6715.

    Article  CAS  Google Scholar 

  75. Sänze S, Hess C. Ethanol gas sensing by indium oxide: an operando spectroscopic Raman-FTIR study. J Phys Chem C. 2014;118(44):25603.

    Article  CAS  Google Scholar 

  76. Bag A, Lee NE. Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J Mater Chem C. 2019;7(43):13367.

    Article  CAS  Google Scholar 

  77. Chen X, Wang S, Su C, Han Y, Zou C, Zeng M, Hu N, Su Y, Zhou Z, Yang Z. Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens Actuators B Chem. 2020;305:127393.

    Article  CAS  Google Scholar 

  78. Gao F, Song J, Xu Z, Xu L, Guo Y, Miao L, Luo X. All-polymer free-standing electrodes for flexible electrochemical sensors. Sens Actuators B Chem. 2021;337:129765.

    Article  CAS  Google Scholar 

  79. Al-Hashem M, Akbar S, Morris P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens Actuators B Chem. 2019;301:126845.

    Article  CAS  Google Scholar 

  80. Arafat MM, Dinan B, Akbar SA, Haseeb AS. Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors. 2012;12(6):7207.

    Article  CAS  Google Scholar 

  81. Wang D, Tian L, Li H, Wan K, Yu X, Wang P, Chen A, Wang X, Yang J. Mesoporous ultrathin SnO2 nanosheets in situ modified by graphene oxide for extraordinary formaldehyde detection at low temperatures. ACS Appl Mater Interfaces. 2019;11(13):12808.

    Article  CAS  Google Scholar 

  82. Afzal A, Cioffi N, Sabbatini L, Torsi L. NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sens Actuators B Chem. 2012;171–172:25.

  83. Yu L, Guo F, Yang B, Jiang Y, Qi L, Fan X. Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nanowalls at room temperature. J Alloys Compd. 2016;682:352.

    Article  CAS  Google Scholar 

  84. Jha RK, Bhat N. Recent progress in chemiresistive gas sensing technology based on molybdenum and tungsten chalcogenide nanostructures. Adv Mater Interfaces. 2020;7(7):1901992.

    Article  CAS  Google Scholar 

  85. Ziegler JM, Andoni I, Choi EJ, Fang L, Flores-Zuleta H, Humphrey NJ, Kim DH, Shin J, Youn H, Penner RM. Sensors based upon nanowires, nanotubes, and nanoribbons: 2016–2020. Anal Chem. 2021;93(1):124.

    Article  CAS  Google Scholar 

  86. Malik R, Tomer VK, Mishra YK, Lin L. Functional gas sensing nanomaterials: a panoramic view. Appl Phys Rev. 2020;7(2):021301.

  87. Hayashi K, Kataoka M, Jippo H, Ohfuchi M, Sato S. Vacancy-assisted selective detection of low-ppb formaldehyde in two-dimensional layered SnS2. ACS Appl Mater Interfaces. 2020;12(10):12207.

    Article  CAS  Google Scholar 

  88. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem. 2014;204:250.

    Article  CAS  Google Scholar 

  89. Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem. 2014;192:607.

    Article  CAS  Google Scholar 

  90. Chen Y, Yu L, Feng D, Zhuo M, Zhang M, Zhang E, Xu Z, Li Q, Wang T. Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres. Sens Actuators B Chem. 2012;166:61.

    Article  CAS  Google Scholar 

  91. Zhou X, Xue Q, Chen H, Liu C. Current–voltage characteristics and ethanol gas sensing properties of ZnO thin film/Si heterojunction at room temperature. Physica E. 2010;42(8):2021.

    Article  CAS  Google Scholar 

  92. Staerz A, Boehme I, Degler D, Bahri M, Doronkin D, Zimina A, Brinkmann H, Herrmann S, Junker B, Ersen O. Rhodium oxide surface-loaded gas sensors. Nanomaterials. 2018;8(11):892.

    Article  CAS  Google Scholar 

  93. Epifani M, Kaciulis S, Mezzi A, Zhang T, Arbiol J, Siciliano P, Landström A, Concina I, Moumen A, Comini E. Rhodium as efficient additive for boosting acetone sensing by TiO2 nanocrystals. Beyond the classical view of noble metal additives. Sens Actuators B Chem. 2020;319:128338.

  94. Zhang X, Wang W, Zhang D, Mi Q, Yu S. Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature. J Mater Sci Mater Electron. 2021;32(6):7739.

    Article  CAS  Google Scholar 

  95. Wang H, Li Q, Zheng X, Wang C, Ma J, Yan B, Du Z, Li M, Wang W, Fan H. 3D porous flower-like ZnO microstructures loaded by large-size Ag and their ultrahigh sensitivity to ethanol. J Alloy Compd. 2020;829:154453.

    Article  CAS  Google Scholar 

  96. Li F, Song H, Yu W, Ma Q, Dong X, Wang J, Liu G. Electrospun TiO2//SnO2 Janus nanofibers and its application in ethanol sensing. Mater Lett. 2020;262:127070.

    Article  CAS  Google Scholar 

  97. Zhu L, Zeng W, Yang J, Li Y. One-step hydrothermal fabrication of nanosheet-assembled NiO/ZnO microflower and its ethanol sensing property. Ceram Int. 2018;44(16):19825.

    Article  CAS  Google Scholar 

  98. Tan W, Tan J, Fan L, Yu Z, Qian J, Huang X. Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor. Sens Actuators B Chem. 2018;256:282.

    Article  CAS  Google Scholar 

  99. Chen G, Ji S, Li H, Kang X, Chang S, Wang Y, Yu G, Lu J, Claverie J, Sang Y. High-energy faceted SnO2-coated TiO2 nanobelt heterostructure for near-ambient temperature-responsive ethanol sensor. ACS Appl Mater Interfaces. 2015;7(44):24950.

    Article  CAS  Google Scholar 

  100. Zhang YB, Yin J, Li L, Zhang LX, Bie LJ. Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sens Actuators B Chem. 2014;202:500.

    Article  CAS  Google Scholar 

  101. Song Z, Zhang J, Jiang J. Morphological evolution, luminescence properties and a high-sensitivity ethanol gas sensor based on 3D flower-like MoS2–ZnO micro/nanosphere arrays. Ceram Int. 2020;46(5):6634.

    Article  CAS  Google Scholar 

  102. Huang XY, Chi ZT, Liu J, Li DH, Sun XJ, Yan C, Wang YC, Li H, Wang XD, Xie WF. Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites. Sens Actuators B Chem. 2020;304:127305.

    Article  CAS  Google Scholar 

  103. Zhang D, Fan X, Yang A, Zong X. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. J Colloid Interface Sci. 2018;523:217.

    Article  CAS  Google Scholar 

  104. Reddy CS, Murali G, Reddy AS, Park S, In I. GO incorporated SnO2 nanotubes as fast response sensors for ethanol vapor in different atmospheres. J Alloys Compd. 2020;813:152251.

    Article  CAS  Google Scholar 

  105. Tian M, Miao J, Cheng P, Mu H, Tu J, Sun J. Layer-by-layer nanocomposites consisting of Co3O4 and reduced graphene (rGO) nanosheets for high selectivity ethanol gas sensors. Appl Surf Sci. 2019;479:601.

    Article  CAS  Google Scholar 

  106. Qin C, Wang Y, Gong Y, Zhang Z, Cao J. CuO–ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. J Alloys Compd. 2019;770:972.

    Article  CAS  Google Scholar 

  107. Ma ZH, Yu RT, Song JM. Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sens Actuators B Chem. 2020;305:127377.

    Article  CAS  Google Scholar 

  108. Singh G, Singh RC. Highly sensitive gas sensor based on Er-doped SnO2 nanostructures and its temperature dependent selectivity towards hydrogen and ethanol. Sens Actuators B Chem. 2019;282:373.

    Article  CAS  Google Scholar 

  109. Li J, Yang Y, Wang Q, Cheng X, Luo Y, An B, Bai J, Wang Y, Xie E. Design of size-controlled Au nanoparticles loaded on the surface of ZnO for ethanol detection. CrystEngComm. 2021;23(4):783.

    Article  CAS  Google Scholar 

  110. Chen Y, Li H, Ma Q, Che Q, Wang J, Wang G, Yang P. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance. Appl Surf Sci. 2018;439:649.

    Article  CAS  Google Scholar 

  111. Liu C, Kuang Q, Xie Z, Zheng L. The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm. 2015;17(33):6308.

  112. Ma J, Xiao X, Zou Y, Ren Y, Zhou X, Yang X, Cheng X, Deng Y. A general and straightforward route to noble metal-decorated mesoporous transition-metal oxides with enhanced gas sensing performance. Small. 2019;15(46):1904240.

    Article  CAS  Google Scholar 

  113. Wang D, Deng L, Cai H, Yang J, Bao L, Zhu Y, Wang X. Bimetallic PtCu nanocrystal sensitization WO3 hollow spheres for highly efficient 3-hydroxy-2-butanone biomarker detection. ACS Appl Mater Interfaces. 2020;12(16):18904.

    Article  CAS  Google Scholar 

  114. Paulowicz I, Hrkac V, Kaps S, Cretu V, Lupan O, Braniste T, Duppel V, Tiginyanu I, Kienle L, Adelung R, Mishra YK. Three-dimensional SnO2 nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv Electron Mater. 2015;1(8):1500081.

  115. Liu X, Sun X, Duan X, Zhang C, Zhao K, Xu X. Core-shell Ag@In2O3 hollow hetero-nanostructures for selective ethanol detection in air. Sens Actuators B Chem. 2020;305:127450.

    Article  CAS  Google Scholar 

  116. Yan Y, Liu J, Liu Q, Yu J, Chen R, Zhang H, Song D, Yang P, Zhang M, Wang J. Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine. J Alloys Compd. 2020;823:153724.

    Article  CAS  Google Scholar 

  117. Zhang J, Lu H, Zhang L, Leng D, Zhang Y, Wang W, Gao Y, Lu H, Gao J, Zhu G. Metal–organic framework-derived ZnO hollow nanocages functionalized with nanoscale Ag catalysts for enhanced ethanol sensing properties. Sens Actuators B Chem. 2019;291:458.

    Article  CAS  Google Scholar 

  118. He K, He S, Yang W, Tian Q. Ag nanoparticles-decorated α-MoO3 nanorods for remarkable and rapid triethylamine-sensing response boosted by pulse-heating technique. J Alloys Compd. 2019;808:151704.

    Article  CAS  Google Scholar 

  119. Meng F, Hou N, Jin Z, Sun B, Guo Z, Kong L, Xiao X, Wu H, Li M, Liu J. Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol. Sens Actuators B Chem. 2015;209:975.

    Article  CAS  Google Scholar 

  120. Yousefi HR, Hashemi B, Mirzaei A, Roshan H, Sheikhi MH. Effect of Ag on the ZnO nanoparticles properties as an ethanol vapor sensor. Mater Sci Semicond Process. 2020;117:105172.

    Article  CAS  Google Scholar 

  121. Krivetskiy V, Zamanskiy K, Beltyukov A, Asachenko A, Topchiy M, Nechaev M, Garshev A, Krotova A, Filatova D, Maslakov K. Effect of AuPd bimetal sensitization on gas sensing performance of nanocrystalline SnO2 obtained by single step flame spray pyrolysis. Nanomaterials (Basel). 2019;9(5):728.

  122. Shao S, Chen X, Chen Y, Lai M, Che L. Ultrasensitive and highly selective detection of acetone based on Au@WO3-SnO2 corrugated nanofibers. Appl Surf Sci. 2019;473:902.

    Article  CAS  Google Scholar 

  123. Zhou L, Zeng W, Li Y. A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property. Mater Lett. 2019;254:92.

    Article  CAS  Google Scholar 

  124. Choi S, Bonyani M, Sun GJ, Lee JK, Hyun SK, Lee C. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors. Appl Surf Sci. 2018;432:241.

    Article  CAS  Google Scholar 

  125. Xiong Y, Xu W, Zhu Z, Xue Q, Lu W, Ding D, Zhu L. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens Actuators B Chem. 2017;253:523.

    Article  CAS  Google Scholar 

  126. Li G, Zhang X, Lu H, Yan C, Chen K, Lu H, Gao J, Yang Z, Zhu G, Wang C. Ethanol sensing properties and reduced sensor resistance using porous Nb2O5-TiO2 n-n junction nanofibers. Sens Actuators B Chem. 2019;283:602.

    Article  CAS  Google Scholar 

  127. Jayababu N, Poloju M, Shruthi J, Reddy MVR. Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceram Int. 2019;45(12):15134.

    Article  CAS  Google Scholar 

  128. Chen K, Chen S, Pi M, Zhang D. SnO2 nanoparticles/TiO2 nanofibers heterostructures: in situ fabrication and enhanced gas sensing performance. Solid State Electron. 2019;157:42.

    Article  CAS  Google Scholar 

  129. Yin M, Wang F, Fan H, Xu L, Liu S. Heterojunction CuO@ZnO microcubes for superior p-type gas sensor application. J Alloys Compd. 2016;672:374.

    Article  CAS  Google Scholar 

  130. Park S, Ko H, Kim S, Lee C. Role of the interfaces in multiple networked one-dimensional core-shell nanostructured gas sensors. ACS Appl Mater Interfaces. 2014;6(12):9595.

    Article  CAS  Google Scholar 

  131. Xu K, Zhao W, Yu X, Duan S, Zeng W. Enhanced ethanol sensing performance using Co3O4–ZnSnO3 arrays prepared on alumina substrates. Physica E. 2020;117:113825.

    Article  CAS  Google Scholar 

  132. Liang Y, Yang Y, Xu K, Yu T, Peng Q, Yao S, Yuan C. Controllable preparation of faceted Co3O4 nanocrystals@MnO2 nanowires shish-kebab structures with enhanced triethylamine sensing performance. Sens Actuators B Chem. 2020;304:127358.

    Article  CAS  Google Scholar 

  133. Huang R, Li Y, Song Y, Wang L. Facial preparation of N-doped carbon foam supporting Co3O4 nanorod arrays as free-standing lithium-ion batteries’ anode. J Alloys Compd. 2020;818:152839.

    Article  CAS  Google Scholar 

  134. Choi PG, Fuchigami T, Kakimoto KI, Masuda Y. Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles. ACS Sens. 2020;5(6):1665.

    Article  CAS  Google Scholar 

  135. Yuan Z, Zhao J, Meng F, Qin W, Chen Y, Yang M, Ibrahim M, Zhao Y. Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. J Alloys Compd. 2019;793:24.

    Article  CAS  Google Scholar 

  136. Li B, Liu J, Liu Q, Chen R, Zhang H, Yu J, Song D, Li J, Zhang M, Wang J. Core-shell structure of ZnO/Co3O4 composites derived from bimetallic-organic frameworks with superior sensing performance for ethanol gas. Appl Surf Sci. 2019;475:700.

    Article  CAS  Google Scholar 

  137. Zhang Z, Wen Z, Ye Z, Zhu L. Synthesis of Co3O4/Ta2O5 heterostructure hollow nanospheres for enhanced room temperature ethanol gas sensor. J Alloys Compd. 2017;727:436.

    Article  CAS  Google Scholar 

  138. Zhang Y, Xin X, Sun H, Liu Q, Zhang J, Li G, Gao J, Lu H, Wang C. Porous ZnO–SnO2–Zn2SnO4 heterojunction nanofibers fabricated by electrospinning for enhanced ethanol sensing properties under UV irradiation. J Alloys Compd. 2021;854:157311.

    Article  CAS  Google Scholar 

  139. Liu J, Zhang L, Cheng B, Fan J, Yu J. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. J Hazard Mater. 2021;413:125352.

    Article  CAS  Google Scholar 

  140. Hu K, Wang F, Shen Z, Liu H, Xiong J. Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO–SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J Alloys Compd. 2021;850:156663.

    Article  CAS  Google Scholar 

  141. Cho SY, Jang D, Kang H, Koh HJ, Choi J, Jung HT. Ten nanometer scale WO3/CuO heterojunction nanochannel for an ultrasensitive chemical sensor. Anal Chem. 2019;91(10):6850.

    Article  CAS  Google Scholar 

  142. Zhang K, Qin S, Tang P, Feng Y, Li D. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J Hazard Mater. 2020;391:122191.

    Article  CAS  Google Scholar 

  143. Wang Y, Zhang H, Sun X. Electrospun nanowebs of NiO/SnO2 p-n heterojunctions for enhanced gas sensing. Appl Surf Sci. 2016;389:514.

    Article  CAS  Google Scholar 

  144. Motsoeneng RG, Kortidis I, Rikhotso R, Swart HC, Ray SS, Motaung DE. Temperature-dependent response to C3H7OH and C2H5OH vapors induced by deposition of Au nanoparticles on SnO2/NiO hollow sphere-based conductometric sensors. Sens Actuators B Chem. 2020;316:128041.

    Article  CAS  Google Scholar 

  145. Zhu L, Zeng W, Yang J, Li Y. Fabrication of hierarchical hollow NiO/ZnO microspheres for ethanol sensing property. Mater Lett. 2018;230:297.

    Article  CAS  Google Scholar 

  146. Zhang B, Fu W, Meng X, Ruan A, Su P, Yang H. Enhanced ethanol sensing properties based on spherical-coral-like SnO2 nanorods decorated with α-Fe2O3 nanocrystallites. Sens Actuators B Chem. 2018;261:505.

    Article  CAS  Google Scholar 

  147. Qiao XQ, Zhang ZW, Hou DF, Li DS, Liu Y, Lan YQ, Zhang J, Feng P, Bu X. Tunable MoS2/SnO2 p-n heterojunctions for an efficient trimethylamine gas sensor and 4-nitrophenol reduction catalyst. ACS Sustain Chem Eng. 2018;6(9):12375.

  148. Shao Z, Liu W, Zhang Y, Yang X, Zhong M. Insights on interfacial charge transfer across MoS2/TiO2-NTAs nanoheterostructures for enhanced photodegradation and biosensing&gas-sensing performance. J Mol Struct. 2021;1244:131240.

  149. Yan H, Song P, Zhang S, Yang Z, Wang Q. Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol. RSC Adv. 2015;5(97):79593.

    Article  CAS  Google Scholar 

  150. Reddy KTR, Sreedevi G, Ramya K, Miles RW. Physical properties of nano-crystalline SnS2 layers grown by chemical bath deposition. Energy Procedia. 2012;15:340.

    Article  CAS  Google Scholar 

  151. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett. 2011;11(10):4168.

    Article  CAS  Google Scholar 

  152. Chen Q, Ma SY, Xu XL, Jiao HY, Zhang GH, Liu LW, Wnag PY, Gengzang DJ, Yao HH. Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens Actuators B Chem. 2018;264:263.

    Article  CAS  Google Scholar 

  153. Wu J, Zhang D, Cao Y. Fabrication of iron-doped titanium dioxide quantum dots/molybdenum disulfide nanoflower for ethanol gas sensing. J Colloid Interface Sci. 2018;529:556.

  154. Mitri F, De Iacovo A, De Luca M, Pecora A, Colace L. Lead sulphide colloidal quantum dots for room temperature NO2 gas sensors. Sci Rep. 2020;10(1):12556.

    Article  CAS  Google Scholar 

  155. Zhang D, Dong G, Cao Y, Zhang Y. Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. J Colloid Interface Sci. 2018;528:184.

    Article  CAS  Google Scholar 

  156. Li Y, Song S, Zhang LB, Lian XX, Shan LX, Zhou QJ. Fabrication of hollow porous ZnO@ZnS heterostructures via hydrothermal method and enhanced gas-sensing performance for ethanol. J Alloys Compd. 2021;855:157430.

    Article  CAS  Google Scholar 

  157. Molina A, Escobar-Barrios V, Oliva J. A review on hybrid and flexible CO2 gas sensors. Synth Met. 2020;270:116602.

    Article  CAS  Google Scholar 

  158. Yi N, Shen M, Erdely D, Cheng H. Stretchable gas sensors for detecting biomarkers from humans and exposed environments. Trends Analyt Chem. 2020;133:116085.

    Article  CAS  Google Scholar 

  159. Luan Y, Zhang S, Nguyen TH, Yang W, Noh JS. Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens Actuators B Chem. 2018;265:609.

    Article  CAS  Google Scholar 

  160. Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ, Lai HJ. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens Actuators B Chem. 2004;101(1):81.

    Article  CAS  Google Scholar 

  161. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dail H. Nanotube molecular wires as chemical sensors. Science. 2000;287(5453):622.

    Article  CAS  Google Scholar 

  162. Cao J, Gong Y, Wang Y, Zhang B, Zhang H, Sun G, Bala H, Zhang Z. Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: hydrothermal synthesis and ethanol gas sensing application. Mater Lett. 2017;198:76.

    Article  CAS  Google Scholar 

  163. Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson JA, Ahuja R, Karton A. Sensing of volatile organic compounds on two-dimensional nitrogenated holey graphene, graphdiyne, and their heterostructure. Carbon. 2020;163:213.

    Article  CAS  Google Scholar 

  164. Zhang L, Shi J, Huang Y, Xu H, Xu K, Chu PK, Ma F. Octahedral SnO2/graphene composites with enhanced gas-sensing performance at room temperature. ACS Appl Mater Interfaces. 2019;11(13):12958.

    Article  CAS  Google Scholar 

  165. Dhall S, Kumar M, Kumar M, Mehta BR. Dual gas sensing properties of graphene-Pd/SnO2 composites for H2 and ethanol: role of nanoparticles-graphene interface. Int J Hydrog Energy. 2018;43:17921.

  166. Shafiei M, Bradford J, Khan H, Piloto C, Wlodarski W, Li Y, Motta N. Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide. Appl Surf Sci. 2018;462:330.

    Article  CAS  Google Scholar 

  167. Zhang J, Jiang G, Goledzinowski M, Comeau FJE, Li K, Cumberland T, Lenos J, Xu P, Li M, Yu A. Green solid electrolyte with cofunctionalized nanocellulose/graphene oxide interpenetrating network for electrochemical gas sensors. Small Methods. 2017;1(11):1700237.

    Article  CAS  Google Scholar 

  168. Liu X, Liu J, Liu Q, Chen R, Zhang H, Yu J, Song D, Li J, Zhang M, Wang J. Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceram Int. 2018;44(17):21091.

    Article  CAS  Google Scholar 

  169. Meng F, Chang Y, Qin W, Yuan Z, Zhao J, Zhang J, Han E, Wang S, Yang M, Shen Y, Ibrahim M. ZnO-reduced graphene oxide composites sensitized with graphitic carbon nitride nanosheets for ethanol sensing. ACS Appl Nano Mater. 2019;2(5):2734.

    Article  CAS  Google Scholar 

  170. Niavol SS, Moghaddam HM. SnO2 nanoparticles/reduced graphene oxide nanocomposite for fast ethanol vapor sensing at a low operating temperature with an excellent long-term stability. J Mater Sci Mater Electron. 2021;32(5):6550.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (No. 2021H1D3A2A01100019), the National Natural Science Foundation of China (No. 62074057), Projects of Science and Technology Commission of Shanghai Municipality (Nos. 19ZR1473800 and 18DZ2270800), the Open Research Projects of Zhejiang Lab (No. 2021MC0AB06), the Postdoctoral Scientific Research Foundation of Qingdao. The authors would also like to thank Kehui Han from Shiyanjia Lab (www.shiyanjia.com) for interesting discussion and measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Yun Gai, Xing Wu or Wan-Feng Xie.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, LY., Lai, RP., Dong, XH. et al. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41, 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01937-4

Keywords

Navigation