Skip to main content

Advertisement

Log in

Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The fast and reversible sodiation/desodiation of anode materials remains an indelible yet fascinating target. Herein, a class of the densely packed Si/MXene composite microspheres is constructed and prepared, taking advantages of the synergistic effects of the activated Si nanoparticles and conductive flower-like MXene microspheres with ample ion-diffusion pathways. Consequently, the intrinsic MXene nanosheets with intelligently regulated interlayer spacing can accommodate the volume change induced strain during cycling, and the strong interaction between the Si and MXene matrix greatly contributes to the robust structural stability. As expected, the Si/MXene composite architecture exhibits boosted sodium storage performance, in terms of an inspiring reversible capacity of 751 mAh·g−1 at 0.1 A·g−1, remarkable long-term cycling stability of 376 mAh·g−1 at 0.1 A·g−1 over 500 cycles, and outstanding rate capability (after one consecutive current density changing from 0.1 to 2.0 A·g−1, a large capacity of 275 mAh·g−1 is regained after suddenly returning the initial current density back to 0.1 A·g−1 and in the subsequent 200 cycles this composite architecture anode still delivers a capacity of 332 mAh·g−1). The kinetics analysis indicates superior pseudocapacitive property, high electronic conductivity, and favorable sodium-ion adsorption and diffusion capability, confirming fast sodium storage performance. Impressively, ex-situ X-ray diffraction and selected area electron diffraction characterizations corroborate the formation of NaSi6 as the main sodiation products during the reversible evolutions of cycled proceeding with sodium-ion insertion. This work sheds light on the elaborate design of silicon-based nanostructured anodes towards advanced high-performance sodium-ion batteries.

Graphical abstract

摘要

钠离子电池负极材料的快速和可逆的钠脱嵌仍然是一个令人着迷的目标。利用Si纳米粒子与具有丰富离子扩散路径的导电花状MXene微球的协同作用, 构建并制备了一类致密堆积的Si/MXene复合微球。因此, 具有智能调节层间距特性的MXene纳米片能够适应循环过程中体积变化引起的应变, Si和MXene基体之间的强相互作用有助于结构的稳定。Si/MXene复合结构提高了钠离子的存储性能, 在0.1 A·g−1电流密度下可逆比容量为751 mAh·g−1, 经500次循环后比容量可达376 mAh·g−1。在一个连续电流密度变化从0.1到2.0 A·g−1, Si/MXene复合微球的比容量高达275 mAh·g−1, 返回初始电流密度0.1 A·g−1, 随后经200次循环后, 这种复合负极材料的比容量仍可达332 mAh·g−1。电化学动力学分析表明: 该材料具有良好的赝电容性、高的电子电导率和良好的钠离子吸附和扩散能力, 从而证明了 Si/MXene复合微球具有快速储钠的性能。在钠离子脱嵌循环的可逆演化过程中, 非原位X射线衍射和选定区域电子衍射结果证实了 NaSi6是主要钠化产物。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Zhang N, Jiang HY, Li YW, Yong P, Li MX, Zhu H, Ci S, Kang CQ. Aggregating distributed energy storage: cloud-based flexibility services from China. IEEE Power Energy Mag. 2021;19(4):63.

    Article  CAS  Google Scholar 

  2. Ren M, Lu PT, Liu XR, Hossain MS, Fang YR, Hanaoka T, O’Gallachoir B, Glynn J, Dai HC. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality. Appl Energy. 2021;298:117209.

    Article  CAS  Google Scholar 

  3. Chu CX, Li R, Cai FP, Bai ZC, Wang YX, Xu X, Wang NN, Yang J, Dou SX. Recent advanced skeletons in sodium metal anodes. Energy Environ Sci. 2021;14(8):4318.

    Article  CAS  Google Scholar 

  4. Han X, Wang SY, Xu YB, Zhong GM, Zhou Y, Liu B, Jiang XY, Wang X, Li Y, Zhang ZQ, Chen SY, Wang CM, Yang Y, Zhang WQ, Wang JL, Liu J, Yang JH. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ Sci. 2021;14(9):5044.

    Article  CAS  Google Scholar 

  5. Yin B, Liang SQ, Yu DD, Cheng BS, Egun IL, Lin JD, Xie XD, Shao HZ, He HY, Pan AQ. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries. Adv Mater. 2021;33(37):2100808.

    Article  CAS  Google Scholar 

  6. Yang XM, Rogach AL. Anodes and sodium-free cathodes in sodium ion batteries. Adv Energy Mater. 2020;10(22):2000288.

    Article  CAS  Google Scholar 

  7. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.

    Article  CAS  Google Scholar 

  8. Deng JQ, Luo WB, Chou SL, Liu HK, Dou SX. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018;8(4):1701428.

    Article  Google Scholar 

  9. Zhang W, Peng J, Hua WB, Liu Y, Wang JS, Liang YR, Lai WH, Jiang Y, Huang Y, Zhang W, Yang HL, Yang YG, Li LN, Liu ZJ, Wang L, Chou SL. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv Energy Mater. 2021;11(22):2100757.

    Article  CAS  Google Scholar 

  10. Ma JM, Li YT. Editorial for advanced energy storage and conversion materials and technologies. Rare Met. 2020;39(9):967.

    Article  CAS  Google Scholar 

  11. Zhou YY, Yang YL, Jiao MG, Zhou Z. What is the promising anode material for Na ion batteries? Sci Bull. 2018;63(3):146.

    Article  CAS  Google Scholar 

  12. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    Article  CAS  Google Scholar 

  13. Ma CL, Hu ZH, Song NJ, Zhao Y, Liu YZ, Wang HQ. Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage. Rare Met. 2021;40(4):837.

    Article  CAS  Google Scholar 

  14. Han X, Zhang ZQ, Chen HX, Zhang QB, Chen SY, Yang Y. On the interface design of Si and multilayer graphene for a high-performance Li-ion battery anode. ACS Appl Mater Interfaces. 2020;12(40):44840.

    Article  CAS  Google Scholar 

  15. Xu YL, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Reversible Na-ion uptake in Si nanoparticles. Adv Energy Mater. 2016;6(2):1501436.

    Article  Google Scholar 

  16. Chou CY, Lee M, Hwang G. Sodiation mechanisms in Si, Ge, and Sn for Na-ion battery anodes: a first-principles study. Abstr Pap Am Chem S. 2016;251(1):454.

    Google Scholar 

  17. Zheng SM, Tian YR, Liu YX, Wang S, Hu CQ, Wang B, Wang KM. Alloy anodes for sodium-ion batteries. Rare Met. 2021;40(2):272.

    Article  CAS  Google Scholar 

  18. Ding JF, Tang C, Zhu GJ, He FY, Du AJ, Wu MH, Zhang HJ. Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2Tx MXene for highly effective sodium storage. Mater Chem Front. 2021;5(2):825.

    Article  CAS  Google Scholar 

  19. Liu ZM, Yu XY, Lou XW, Paik U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ Sci. 2016;9(7):2314.

    Article  CAS  Google Scholar 

  20. Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.

    Article  CAS  Google Scholar 

  21. Yue C, Yu YJ, Sun SB, He X, Chen BB, Lin W, Xu BB, Zheng MS, Wu ST, Li J, Kang JY, Lin LW. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater. 2015;25(9):1386.

    Article  CAS  Google Scholar 

  22. Kulish VV, Malyi OI, Ng MF, Chen Z, Manzhos S, Wu P. Controlling Na diffusion by rational design of Si-based layered architectures. Phys Chem Chem Phys. 2014;16(9):4260.

    Article  CAS  Google Scholar 

  23. Qiu DF, Ma X, Zhang JD, Lin ZX, Zhao B. Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries. Nanoscale Res Lett. 2018;13(1):275.

    Article  Google Scholar 

  24. Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422.

    Article  CAS  Google Scholar 

  25. Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153.

    Article  CAS  Google Scholar 

  26. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.

    Article  CAS  Google Scholar 

  27. Zhang L, Hu XL, Chen CJ, Guo HP, Liu XX, Xu GZ, Zhong HJ, Cheng S, Wu P, Meng JS, Huang YH, Dou SX, Liu HK. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv Mater. 2017;29(5):1604708.

    Article  Google Scholar 

  28. Hong ZS, Maleki H, Ludwig T, Zhen YC, Wilhelm M, Lee D, Kim KH, Mathur S. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem. 2021;62:660.

    Article  Google Scholar 

  29. Zhang X, Zhang ZH, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem. 2018;27(1):73.

    Article  Google Scholar 

  30. Xiong DB, Li XF, Bai ZM, Lu SG. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.

    Article  Google Scholar 

  31. Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.

    Article  CAS  Google Scholar 

  32. Kalisvaart WP, Olsen BC, Luber EJ, Buriak JM. Sb-Si alloys and multilayers for sodium-ion battery anodes. ACS Appl Energy Mater. 2019;2(3):2205.

    Article  CAS  Google Scholar 

  33. Ma P, Fang DL, Liu YL, Shang Y, Shi YM, Yang HY. MXene-based materials for electrochemical sodium-ion storage. Adv Sci. 2021;8(11):2003185.

    Article  CAS  Google Scholar 

  34. Yang J, Bao WZ, Jaumaux P, Zhang ST, Wang CY, Wang GX. MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces. 2019;6(8):1802004.

    Article  Google Scholar 

  35. Zhu XQ, Shen JL, Chen XF, Li Y, Peng WC, Zhang GL, Zhang FB, Fan XB. Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries. Chem Eng J. 2019;378:122212.

    Article  CAS  Google Scholar 

  36. Zhang YL, Mu ZJ, Lai JP, Chao YG, Yang Y, Zhou P, Li YJ, Yang WX, Xia ZH, Guo SJ. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano. 2019;13(2):2167.

    CAS  Google Scholar 

  37. Xia MT, Chen BJ, Gu F, Zu LH, Xu MZ, Feng YT, Wang ZJ, Zhang HJ, Zhang C, Yang JH. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano. 2020;14(4):5111.

    Article  CAS  Google Scholar 

  38. Hui XB, Zhao RZ, Zhang P, Li CX, Wang CX, Yin LW. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv Energy Mater. 2019;9(33):1901065.

    Article  Google Scholar 

  39. Zhao MQ, Xie XQ, Ren CE, Makaryan T, Anasori B, Wang GX, Gogotsi Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv Mater. 2017;29(37):1702410.

    Article  Google Scholar 

  40. Huang PF, Zhang SL, Ying HJ, Zhang Z, Han WQ. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J. 2021;417:129161.

    Article  CAS  Google Scholar 

  41. Ma K, Dong YR, Jiang H, Hu YJ, Saha P, Li CZ. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem Eng J. 2021;413:127479.

    Article  CAS  Google Scholar 

  42. Wu F, Jiang Y, Ye ZQ, Huang YX, Wang ZH, Li SJ, Mei Y, Xie M, Li L, Chen RJ. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J Mater Chem A. 2019;7(3):1315.

    Article  CAS  Google Scholar 

  43. Xu XD, Zhang YL, Sun HY, Zhou JW, Liu Z, Qiu ZP, Wang D, Yang C, Zeng QG, Peng ZQ, Guo SJ. Orthorhombic cobalt ditelluride with Te vacancy defects anchoring on elastic MXene enables efficient potassium-ion storage. Adv Mater. 2021;33(31):2100272.

    Article  CAS  Google Scholar 

  44. Fang YZ, Hu R, Zhu K, Ye K, Yan J, Wang GL, Cao DX. Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv Funct Mater. 2020;30(50):2005663.

    Article  CAS  Google Scholar 

  45. Gou L, Jing WF, Li Y, Wang M, Hu SL, Wang HQ, He YB. Lattice-coupled Si/MXene confined by hard carbon for fast sodium-ion conduction. ACS Appl Energy Mater. 2021;4(7):7268.

    Article  CAS  Google Scholar 

  46. Tian Y, An YL, Feng JK. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(10):10004.

    Article  CAS  Google Scholar 

  47. Sun N, Zhu QZ, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater. 2019;29(51):1906282.

    Article  CAS  Google Scholar 

  48. Zhang CF, Park SN, Seral-Ascaso A, Barwich S, McEyoy N, Boland CS, Coleman JN, Gogotsi Y, Nicolosi V. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat Commun. 2019;10(1):849.

    Article  Google Scholar 

  49. Lee Y, Lee KY, Choi WC. One-pot synthesis of antimony-embedded silicon oxycarbide materials for high-performance sodium-ion batteries. Adv Funct Mater. 2017;27(43):1702607.

    Article  Google Scholar 

  50. Han X, Zhang ZQ, Chen HX, Luo LS, Zhang QB, Chen JZ, Chen SY, Yang Y. Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. J Mater Chem A. 2021;9(6):3628.

    Article  CAS  Google Scholar 

  51. Aslam MK, Xu MW. A mini-review: MXene composites for sodium/potassium-ion batteries. Nanoscale. 2020;12(30):15993.

    Article  CAS  Google Scholar 

  52. Shaju KM, Subba Rao GV, Chowdari BVR. EIS and GITT studies on oxide cathodes, O2 − Li(2/3) + x(Co0.15Mn0.85)O2 (x = 0 and 1/3). Electrochim Acta. 2003;48(18):2691.

    Article  CAS  Google Scholar 

  53. Huang SZ, Liu LX, Zheng Y, Wang Y, Kong DZ, Zhang YM, Shi YM, Zhang L, Schmidt Oliver G, Yang HY. Efficient sodiums in rolled-up amorphous Si nanomembranes. Adv Mater. 2018;30(20):1706637.

    Article  Google Scholar 

  54. Wang HQ, An D, Li N, Li Y, Wang M, Zhang JF, Hu SL, He YB. PbTe nanodots confined on ternary B2O3/BC2O/C nanosheets as electrode for efficient sodium storage. J Power Sources. 2020;461:228110.

    Article  CAS  Google Scholar 

  55. Qian J, Wu F, Ye YS, Zhang ML, Huang YX, Xing Y, Qu W, Li L, Chen RJ. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv Energy Mater. 2018;8(16):1703159.

    Article  Google Scholar 

  56. Ni D, Sun W, Wang ZH, Bai Y, Lei HS, Lai XH, Sun KN. Heteroatom-doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life. Adv Energy Mater. 2019;9(19):1900036.

    Article  Google Scholar 

  57. Saddique J, Zhang X, Wu TH, Wang X, Cheng XP, Su H, Liu SQ, Zhang LQ, Li GY, Zhang YF, Yu HJ. Enhanced silicon diphosphide–carbon composite anode for long-cycle, high-efficient sodium ion batteries. ACS Appl Energy Mater. 2019;2(3):2223.

    Article  CAS  Google Scholar 

  58. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21703209), Shanxi Province Science Foundation (No. 201901D211270), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, Key Research and Development (R&D) Projects of Shanxi Province (No. 201803D121037), the Specialized Research Fund for Sanjin Scholars Program of Shanxi Province and the Graduate Student Education Innovation Projects of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Qi Wang or Sheng-Liang Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HQ., Zhao, YX., Gou, L. et al. Rational construction of densely packed Si/MXene composite microspheres enables favorable sodium storage. Rare Met. 41, 1626–1636 (2022). https://doi.org/10.1007/s12598-021-01895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01895-x

Keywords

Navigation