Skip to main content

Advertisement

Log in

Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To realize highly efficient hydrogen production of graphene-based photocatalysts, it is greatly important to increase more interfacial active sites onto graphene. In this work, the highly efficient CoSx-rGO (reduced graphene oxide)/TiO2 composite photocatalyst was synthesized via a simple two-step method, including the hydrothermal loading of rGO nanosheets onto TiO2 nanoparticles and the subsequent photodeposition process of CoSx nanodots (0.5–2 nm) on the rGO nanosheets. Photocatalytic experimental results confirmed that the CoSx-rGO/TiO2 photocatalyst displayed a distinctly higher photocatalytic H2-evolution activity than the TiO2 photocatalyst. The highest hydrogen-production efficiency of obtained CoSx-rGO/TiO2 (10%) achieved 256.97 μmol·h−1, which was distinctly higher than that of TiO2 (4.41 μmol·h−1), rGO/TiO2 (20.19 μmol·h−1) and CoSx/TiO2 (132.67 μmol·h−1). According to the results of various characterizations and tests, the synergistic-effect mechanism of CoSx nanodots and rGO nanosheets is proposed to explain the increased photocatalytic performance of CoSx-rGO/TiO2 photocatalytic material, namely the rGO nanosheets cause the quick transfer of photo-induced carriers from TiO2 to CoSx nanodots, and then CoSx nanodots work as hydrogen-production active sites to quickly generate H2. The present study may offer innovative ideas for the preparation and application of new highly efficient and inexpensive photocatalytic materials.

摘要

增加石墨烯界面产氢活性位点是提升石墨烯基光催化材料的一种重要方法。在本研究中, 通过简单的两步法合成了高效的CoSx-rGO/TiO2复合光催化剂, 即首先利用水热法将rGO纳米片负载到TiO2纳米颗粒上, 随后再通过光沉积的方法在rGO纳米片表面沉积CoSx纳米点 (0.5–2 nm)。光催化实验结果表明, 光催化剂CoSx-rGO/TiO2相比于TiO2具有更高的光催化析氢活性。其中CoSx-rGO/TiO2(10%) 光催化剂的产氢性能达到256.97 μmol•h-1, 明显高于TiO2 (4.41 μmol•h-1)、rGO/TiO2 (20.19 μmol•h-1)和CoSx/TiO2(132.67 μmol•h-1)。根据各种表征测试结果, 提出了CoSx纳米点和rGO纳米片协同增强TiO2光催化产氢性能的作用机理, 即rGO纳米片作为良好的电子转移介质可以将TiO2上的光生电子快速转移至CoSx, 随后CoSx纳米点作为产氢活性位点快速产生H2。本研究可以为新型高效光催化材料的制备和应用提供新的思路。

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu QL, Zhang LY, Yu JG, Wageh S, Al-Ghamdi AA, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today. 2018;21(10):1042.

    Article  CAS  Google Scholar 

  2. Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Metals. 2019;38(5):468.

    Article  CAS  Google Scholar 

  3. Luo JH, Lin ZX, Zhao Y, Jiang SJ, Song SQ. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chin J Catal. 2020;41(1):122.

    Article  CAS  Google Scholar 

  4. Wang K, Li Y, Li J, Zhang GK. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl Catal B Environ. 2020;263:117730.

    Article  CAS  Google Scholar 

  5. Wang XS, Zhou C, Shi R, Liu QQ, Zhang TR. Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Met. 2019;38(5):397.

    Article  CAS  Google Scholar 

  6. Zhao Y, Shao CT, Lin ZX, Jiang SJ, Song SQ. Low-energy facets on CdS allomorph junctions with optimal phase ratio to boost charge directional transfer for photocatalytic H2 fuel evolution. Small. 2020;16(24):944.

    Article  Google Scholar 

  7. Xia PF, Antonietti M, Zhu BC, Heil T, Yu JG, Cao SW. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase. Adv Funct Mater. 2019;29(15):1900093.

    Article  Google Scholar 

  8. Sun J, Zhang M, Wang ZF, Chen HY, Chen Y, Murakami N, Ohno T. Synthesis of anatase TiO2 with exposed 001 and 101 facets and photocatalytic activity. Rare Met. 2019;38(4):287.

    Article  CAS  Google Scholar 

  9. Gao DD, Yuan RR, Fan JJ, Hong XK, Yu HG. Highly efficient S2adsorbed MoSx-modified TiO2 photocatalysts: a general grafting strategy and boosted interfacial charge transfer. J Mater Sci Technol. 2020;56:122.

    Article  Google Scholar 

  10. Riapanitra A, Asakura Y, Yin S. Improved thermochromic and photocatalytic activities of F-VO2/Nb-TiO2 multifunctional coating films. Tungsten. 2019;1(4):306.

    Article  Google Scholar 

  11. Huang GC, Liu XY, Shi SR, Li ST, Xiao ZT, Zhen WQ, Liu SG, Wong PK. Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chin J Catal. 2020;41(1):50.

    Article  CAS  Google Scholar 

  12. Lin HY, Shih CY. Efficient one-pot microwave-assisted hydrothermal synthesis of M (M = Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J Mol Catal A Chem. 2016;411:128.

    Article  CAS  Google Scholar 

  13. Xu Y, Mo YP, Tian J, Wang P, Yu HG, Yu JG. The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl Catal B Environ. 2016;181:810.

    Article  CAS  Google Scholar 

  14. Li H, Chen ZH, Zhao L, Yang GD. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Metals. 2019;38(5):420.

    Article  CAS  Google Scholar 

  15. He F, Meng AY, Cheng B, Ho WK, Yu JG. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal. 2020;41(1):9.

    Article  CAS  Google Scholar 

  16. Xia PF, Cao SW, Zhu BC, Liu MJ, Shi MS, Yu JG, Zhang YF. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem Int Ed. 2020;59(13):5218.

    Article  CAS  Google Scholar 

  17. Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD, Sun ZC. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Metals. 2019;38(5):404.

    Article  CAS  Google Scholar 

  18. Shen RC, Xie J, Xiang QJ, Chen XB, Jiang JZ, Li X. Ni-based photocatalytic H2-production cocatalysts. Chin J Catal. 2019;40(3):240.

    Article  CAS  Google Scholar 

  19. Gao DD, Liu WJ, Xu Y, Wang P, Fan JJ, Yu HG. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity. Appl Catal B Environ. 2020;260:118190.

    Article  CAS  Google Scholar 

  20. Shen J, Wang R, Liu QQ, Yang XF, Tang H, Yang J. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chin J Catal. 2019;40(3):380.

    Article  CAS  Google Scholar 

  21. Wang M, Cheng JJ, Wang XF, Hong XK, Fan JJ, Yu HG. Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst. Chin J Catal. 2021;42(1):37.

    Article  CAS  Google Scholar 

  22. Wang JF, Chen J, Wang PF, Hou J, Wang C, Ao YH. Robust photocatalytic hydrogen evolution over amorphous ruthenium phosphide quantum dots modified g-C3N4 nanosheet. Appl Catal B Environ. 2018;239:578.

    Article  CAS  Google Scholar 

  23. Qi KZ, Lv WX, Khan I, Liu SY. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. Chin J Catal. 2020;41(1):114.

    Article  CAS  Google Scholar 

  24. Lv KL, Fang S, Si LL, Xia Y, Ho WK, Li M. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst. Appl Surf Sci. 2017;391:218.

    Article  CAS  Google Scholar 

  25. Wang P, Xu SQ, Chen F, Yu HG. Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chin J Catal. 2019;40(3):343.

    Article  CAS  Google Scholar 

  26. Gupta B, Melvin AA. TiO2/RGO composites: its achievement and factors involved in hydrogen production. Renew Sustain Energy Rev. 2017;76:1384.

    Article  CAS  Google Scholar 

  27. Xu D, Li L, He R, Qi L, Zhang L, Cheng B. Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Appl Surf Sci. 2018;434:620.

    Article  CAS  Google Scholar 

  28. Shinde Y, Wadhai S, Ponkshe A, Kapoor S, Thakur P. Decoration of Pt on the metal free RGO-TiO2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant beta blocker. Int J Hydrog Energy. 2018;43(8):4015.

    Article  CAS  Google Scholar 

  29. Li HT, Wang P, Yi XQ, Yu HG. Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst. Appl Catal B Environ. 2020;264:118504.

    Article  Google Scholar 

  30. Li Y, Wang XY, Gong J, Xie YH, Wu XY, Zhang GK. Graphene-based nanocomposites for efficient photocatalytic hydrogen evolution: insight into the interface toward separation of photogenerated charges. ACS Appl Mater Inter. 2018;10(50):43760.

    Article  CAS  Google Scholar 

  31. Zhong W, Wu XH, Liu YP, Wang XF, Fan JJ, Yu HG. Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+x cocatalyst for efficient photocatalytic H2 evolution. Appl Catal B Environ. 2021;280:119455.

    Article  CAS  Google Scholar 

  32. Xiang QJ, Yu JG, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc. 2012;134(15):6575.

    Article  CAS  Google Scholar 

  33. Reddy DA, Choi J, Lee S, Kim Y, Hong S, Kumar DP, Kim TK. Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS2 nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water. Catal Sci Technol. 2016;6(16):6197.

    Article  CAS  Google Scholar 

  34. Yu HG, Xiao P, Wang P, Yu JG. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution. Appl Catal B Environ. 2016;193:217.

    Article  CAS  Google Scholar 

  35. Fu JW, Bie CB, Cheng B, Jiang CJ, Yu JG. Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4. ACS Sustain Chem Eng. 2018;6(2):2767.

    Article  CAS  Google Scholar 

  36. Kornienko N, Resasco J, Becknell N, Jian CM, Liu YS, Nie K, Sun XH, Guo JH, Leone SR, Yang PD. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc. 2015;137(23):7448.

    Article  CAS  Google Scholar 

  37. Chen F, Luo W, Mo YP, Yu HG, Cheng B. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl Surf Sci. 2018;430:448.

    Article  CAS  Google Scholar 

  38. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X. Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A. 2015;3(6):2485.

    Article  CAS  Google Scholar 

  39. Yu HG, Zhong W, Huang X, Wang P, Yu JG. Suspensible cubic-phase CdS nanocrystal photocatalyst: facile synthesis and highly efficient H2-evolution performance in a sulfur-rich system. ACS Sustain Chem Eng. 2018;6(4):5513.

    Article  CAS  Google Scholar 

  40. Yu ZM, Meng JL, Li Y, Li YD. Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO2 nanocomposite photocatalyst. Int J Hydrog Energy. 2013;38(36):16649.

    Article  CAS  Google Scholar 

  41. Wang P, Lu YG, Wang XF, Yu HG. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Appl Surf Sci. 2017;391:259.

    Article  CAS  Google Scholar 

  42. Min SX, Hou JH, Lei YG, Ma XH, Lu GX. Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution. Appl Surf Sci. 2017;396:1375.

    Article  CAS  Google Scholar 

  43. Wang PF, Zhan SH, Xia YG, Ma SL, Zhou QX, Li Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl Catal B Environ. 2017;207:335.

    Article  CAS  Google Scholar 

  44. Hafeez HY, Lakhera SK, Narayanan N, Harish SK, Hayakawa Y, Lee BK, Neppolian B. Environmentally sustainable synthesis of CoFe2O4-TiO2/rGO ternary photocatalyst: a highly efficient and stable photocatalyst for high production of hydrogen (solar fuel). ACS Omega. 2019;4(2):2980.

    Article  CAS  Google Scholar 

  45. Qu PP, Gong ZN, Cheng HY, Xiong W, Wu X, Pei P, Zhao RF, Zeng Y, Zhu ZH. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor. RSC Adv. 2015;5(129):106661.

    Article  CAS  Google Scholar 

  46. Zhu W, Xiao SN, Zhang DQ, Liu PJ, Zhou HJ, Dai WR, Liu FF, Li HX. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment. Langmuir. 2015;31(39):10822.

    Article  CAS  Google Scholar 

  47. Xiang QJ, Ma XY, Zhang DN, Zhou HP, Liao YL, Zhang HW, Xu XY, Levchenko L, Bazaka K. Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production. J Coll Interf Sci. 2019;556:376.

    Article  CAS  Google Scholar 

  48. Mu RH, Ao YH, Wu TF, Wang C, Wang PF. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods. J Alloy Compd. 2020;812:151990.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21771142 and 52073263) and the Fundamental Research Funds for the Central Universities (No. WUT2019IB002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huo-Gen Yu or Jia-Jie Fan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Feng, HF., Luo, W. et al. Simultaneous realization of direct photodeposition and high H2-production activity of amorphous cobalt sulfide nanodot-modified rGO/TiO2 photocatalyst. Rare Met. 40, 3125–3134 (2021). https://doi.org/10.1007/s12598-021-01755-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01755-8

Keywords

Navigation