Skip to main content

Advertisement

Log in

Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of unique 3D flower-like Bi2MoO6 (BMO)/reduced graphene oxide (rGO) heterostructured composites decorated with varying amounts of Ag nanoparticles (NPs) were fabricated. Their morphological characteristics, structural features, energy band structures and photoelectrochemical properties were systematically studied. All the Ag/BMO/rGO ternary composites (AgBG-y; y = 1%, 2% and 3%) demonstrated greater photocatalytic activity towards efficient removal of our selected organic models [methyl orange (MO), rhodamine B (RhB) and phenol], as compared with the BMO/rGO binary composites (BG-x; x = 0.25, 2, 4 and 5). Particularly, AgBG-2%, which was synthesized with the addition of 2 wt% rGO and 2 wt% Ag in BMO, possessed superior photocatalytic activity. The fitted rate constants (k) for the photocatalytic degradation of RhB, MO and phenol using AgBG-2% were estimated to be 0.0286, 0.0301 and 0.0165 min−1, respectively, which were over one order of magnitude greater than those obtained using pure BMO. Several factors may contribute to the observed enhancement, including greater specific surface area, enhanced light absorption, promoted spatial separation of electron–hole (e–h+) pairs and their suppressed recombination, especially benefiting from the synergistic effects among BMO, rGO and Ag NPs. Our work suggests that the rational design of BMO/rGO/Ag ternary composite was an effective strategy to boost the photocatalytic activity of the resulting catalyst towards the highly efficient removal of organic pollutants from water.

Graphic abstract

This work presents the construction of Ag NPs-decorated 3D flower-like Bi2MoO6 (BMO)/reduced graphene oxide (rGO) ternary composites as effective photocatalysts for efficient removal of organic pollutants under solar light irradiation. The separation efficiency of photogenerated charge carriers is significantly promoted by the synergistic effect of Ag NPs, BMO and rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Byrne C, Subramanian G, Pillai SC. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng. 2017;6(3):3531.

    Google Scholar 

  2. Xu J, Yue J, Niu J, Chen M, Teng F. Fabrication of Bi2WO6 quantum dots/ultrathin nanosheets 0D/2D homojunctions with enhanced photocatalytic activity under visible light irradiation. Chin J Catal. 2018;39(12):1910.

    CAS  Google Scholar 

  3. Wang Z, Shen Z, Li Y, Zuo J. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Rare Metals. 2020;44(6):609.

    Google Scholar 

  4. Jin X, Ye L, Xie H, Chen G. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord Chem Rev. 2017;349:84.

    CAS  Google Scholar 

  5. Wang XS, Zhou C, Shi R, Liu QQ, Zhang TR. Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. Rare Metals. 2019;38(5):397.

    CAS  Google Scholar 

  6. Bie C, Zhu B, Xu F, Zhang L, Yu J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv Mater. 2019;31(42):1902868.

    CAS  Google Scholar 

  7. Wang JW, Wang CY, Zhu SP, Luo XP, Li ZH, Xu LL. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Rare Metals. 2018;42(4):393.

    Google Scholar 

  8. Zhang WD, Dong XA, Liang Y, Liu R, Sun YJ, Dong F. Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals. 2019;38(5):437.

    CAS  Google Scholar 

  9. Oliveira AT, Rodriguez M, Andrade TS, de Souza HEA, Ardisson JD, Oliveira HS, Oliveira LCA, Lorençon E, Silva AC, Nascimento LL, Patrocínio AOT, Pereira MC. High water oxidation performance of W-doped BiVO4 photoanodes coupled to V2O5 rods as a photoabsorber and hole carrier. Sol RRL. 2018;2(8):1800089.

    Google Scholar 

  10. Dumrongrojthanath P, Phuruangrat A, Thongtem S, Thongtem T. Facile sonochemical synthesis and photocatalysis of Ag nanoparticle/ZnWO4-nanorod nanocomposites. Rare Metals. 2019;38(7):601.

    CAS  Google Scholar 

  11. Xu ZF, Xu K, Feng HF, Du Y, Hao WC. S-p orbital hybridization: a strategy for developing efficient photocatalysts with high carrier mobility. Sci Bull. 2018;63(8):465.

    CAS  Google Scholar 

  12. Meng X, Zhang Z. Bi2MoO6 co-modified by reduced graphene oxide and palladium (Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol. Appl Catal B Environ. 2017;209:383.

    CAS  Google Scholar 

  13. Zhu P, Chen Y, Duan M, Ren Z, Hu M. Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst. Catal Sci Technol. 2018;8(15):3818.

    CAS  Google Scholar 

  14. Zhang T, Huang J, Zhou S, Ouyang H, Cao L, Li A. Microwave hydrothermal synthesis and optical properties of flower-like Bi2MoO6 crystallites. Ceram Int. 2013;39(7):7391.

    CAS  Google Scholar 

  15. Imani M, Farajnezhad M, Tadjarodi A. 3D hierarchical flower-like nanostructure of Bi2MoO6: mechanochemical synthesis, the effect of synthesis parameters and photocatalytic activity. Mater Res Bull. 2017;87:92.

    CAS  Google Scholar 

  16. Ma Y, Jia Y, Jiao Z, Yang M, Qi Y, Bi Y. Hierarchical Bi2MoO6 nanosheet-built frameworks with excellent photocatalytic properties. Chem Commun. 2015;51(30):6655.

    CAS  Google Scholar 

  17. Tian G, Chen Y, Zhou W, Pan K, Dong Y, Tian C, Fu H. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J Mater Chem. 2011;21(3):887.

    CAS  Google Scholar 

  18. Li H, Sun B, Xu Y, Qiao P, Wu J, Pan K, Tian G, Wang L, Zhou W. Surface defect-mediated efficient electron-hole separation in hierarchical flower-like bismuth molybdate hollow spheres for enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci. 2018;531:664.

    CAS  Google Scholar 

  19. Jia Y, Ma Y, Tang J, Shi W. Hierarchical nanosheet-based Bi2MoO6 microboxes for efficient photocatalytic performance. Dalton Trans. 2018;47(16):5542.

    CAS  Google Scholar 

  20. Gnayem H, Sasson Y. Nanostructured 3D sunflower-like bismuth doped BiOClxBr1−x solid solutions with enhanced visible Light photocatalytic activity as a remarkably efficient technology for water purification. J Phys Chem C. 2015;119(33):19201.

    CAS  Google Scholar 

  21. Liu J, Fang W, Wang Y, Xing M, Zhang J. Gold-loaded graphene oxide/PDPB composites for the synchronous removal of Cr(VI) and phenol. Chin J Catal. 2018;39(1):8.

    Google Scholar 

  22. Khazaee Z, Mahjoub AR, Khavar AHC, Srivastava V, Sillanpaa M. Synthesis of layered perovskite Ag, F-Bi2MoO6/rGO: a surface plasmon resonance and oxygen vacancy promoted nanocomposite as a visible-light photocatalyst. J Photochem Photobiol A. 2019;379:6124.

    Google Scholar 

  23. Tian G, Chen Y, Meng X, Zhou J, Zhou W, Pan K, Tian C, Ren Z, Fu H. Hierarchical composite of Ag/AgBr nanoparticles supported on Bi2MoO6 hollow spheres for enhanced visible-light photocatalytic performance. ChemPlusChem. 2013;78(1):117.

    CAS  Google Scholar 

  24. Mohamed RM, Ibrahim FM. Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. J Ind Eng Chem. 2015;22:28.

    CAS  Google Scholar 

  25. Lin X, Xu D, Zhao R, Xi Y, Zhao L, Song M, Zhai H, Che G, Chang L. Highly efficient photocatalytic activity of g-C3N4 quantum dots (CNQDs)/Ag/Bi2MoO6 nanoheterostructure under visible light. Sep Purif Technol. 2017;178:163.

    CAS  Google Scholar 

  26. Bi J, Fang W, Li L, Li X, Liu M, Liang S, Zhang Z, He Y, Lin H, Wu L. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light. J Alloys Compd. 2015;649:28.

    CAS  Google Scholar 

  27. Cai J, Huang J, Lai Y. 3D Au-decorated Bi2MoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. J Mater Chem A. 2017;5(31):16412.

    CAS  Google Scholar 

  28. Liu X, Wang J, Dong Y, Li H, Xia Y, Wang H. One-step synthesis of Bi2MoO6/reduced graphene oxide aerogel composite with enhanced adsorption and photocatalytic degradation performance for methylene blue. Mater Sci Semicond Process. 2018;88:214.

    CAS  Google Scholar 

  29. Tian G, Chen Y, Zhou J, Tian C, Li R, Wang C, Fu H. In situ growth of Bi2MoO6 on reduced graphene oxide nanosheets for improved visible-light photocatalytic activity. CrystEngComm. 2014;16(5):842.

    CAS  Google Scholar 

  30. Liu B, Liu X, Li L, Li J, Li C, Gong Y, Niu L, Zhao X, Sun CQ. ZnIn2S4 flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr(VI). Chin J Catal. 2018;39(12):1901.

    CAS  Google Scholar 

  31. Wan S, Ou M, Zhong Q, Zhang S, Song F. Construction of Z-scheme photocatalytic systems using ZnIn2S4, CoOx-loaded Bi2MoO6 and reduced graphene oxide electron mediator and its efficient nonsacrificial water splitting under visible light. Chem Eng J. 2017;325:690.

    CAS  Google Scholar 

  32. Wang M, Zhang Y, Jin C, Li Z, Chai T, Zhu T. Fabrication of novel ternary heterojunctions of Pd/g-C3N4/Bi2MoO6 hollow microspheres for enhanced visible-light photocatalytic performance toward organic pollutant degradation. Sep Purif Technol. 2019;211:1.

    CAS  Google Scholar 

  33. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    CAS  Google Scholar 

  34. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom. 2014;195:145.

    CAS  Google Scholar 

  35. Meng X, Zhang Z. Plasmonic ternary Ag–rGO–Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity. J Catal. 2016;344:616.

    CAS  Google Scholar 

  36. Dong S, Ding X, Guo T, Yue X, Han X, Sun J. Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem Eng J. 2017;316:778.

    CAS  Google Scholar 

  37. Ma T, Wu J, Mi Y, Chen Q, Ma D, Chai C. Novel Z-scheme g-C3N4/C@Bi2MoO6 composite with enhanced visible-light photocatalytic activity for β-naphthol degradation. Sep Purif Technol. 2017;183:54.

    CAS  Google Scholar 

  38. Huang W, Wang S, Zhou Q, Liu X, Chen X, Yang K, Yu C, Li D. Constructing novel ternary composites of carbon quantum dots/Bi2MoO6/graphitic nanofibers with tunable band structure and boosted photocatalytic activity. Sep Purif Technol. 2019;217:195.

    CAS  Google Scholar 

  39. Zou J, Ma J, Huang Q, Luo S, Yu J, Luo X, Dai W, Sun J, Guo G, Au C. Graphene oxide as structure-directing and morphology-controlling agent for the syntheses of heterostructured graphene-Bi2MoO6/Bi3.64Mo0.36O6.55 composites with high photocatalytic activity. Appl Catal B Environ. 2014;156:447.

    Google Scholar 

  40. Bai J, Li Y, Liu J, Liu L. 3D Bi2MoO6 hollow mesoporous nanostructures with high photodegradation for tetracycline. Microporous Mesoporous Mater. 2017;240:91.

    CAS  Google Scholar 

  41. Tian Y, Li W, Zhao C, Wang Y, Zhang B, Zhang Q. Fabrication of hollow mesoporous SiO2-BiOCl@PANI@Pd photocatalysts to improve the photocatalytic performance under visible light. Appl Catal B Environ. 2017;213:136.

    CAS  Google Scholar 

  42. Chiu YH, Chang TM, Chen CY, Sone M, Hsu YJ. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts. 2019;9(5):430.

    CAS  Google Scholar 

  43. Huang Y, Kang S, Yang Y, Qin H, Ni Z, Yang S, Li X. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl Catal B Environ. 2016;196:89.

    CAS  Google Scholar 

  44. Liu T, Wang L, Lu X, Fan J, Cai X, Gao B, Miao R, Wang J, Lv Y. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways. RSC Adv. 2017;7(20):12292.

    CAS  Google Scholar 

  45. Fernández-Ibáñez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, D’Sa R, Magee E, O’Shea K, Dionysiou DD, Byrne JA. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36.

    Google Scholar 

  46. Yu C, Wu Z, Liu R, Dionysiou DD, Yang K, Wang C, Liu H. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl Catal B Environ. 2017;209:1.

    CAS  Google Scholar 

  47. Deng F, Zhao L, Luo X, Luo S, Dionysiou DD. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem Eng J. 2018;333:423.

    CAS  Google Scholar 

  48. Wei Q, Wang Y, Qin H, Wu J, Lu Y, Chi H, Yang F, Zhou B, Yu H, Liu J. Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity. Appl Catal B Environ. 2018;227:132.

    CAS  Google Scholar 

  49. Wang P, Tang Y, Dong Z, Chen Z, Lim TT. Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J Mater Chem A. 2013;1(15):4718.

    CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Natural Science Foundation of China (Nos. 21607064 and 21707055), the Youth Key Project of Nature Science Foundation of Jiangxi Province (Nos. 20192ACBL20014 and 20192ACBL21011), the Natural Science Foundation of Jiangxi Province (Nos. 20181BAB203018 and 20181BAB213010) and Qingjiang Youth Talent Program (No. JXUSTQJYX20170005). And Dr Wei-Ya Huang is grateful for the scholarship under China Scholarship Council (No. 201803000004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ya Huang or Dionysios D. Dionysiou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Huang, WY., Zhou, Q. et al. Ag-decorated 3D flower-like Bi2MoO6/rGO with boosted photocatalytic performance for removal of organic pollutants. Rare Met. 40, 1086–1098 (2021). https://doi.org/10.1007/s12598-020-01574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01574-3

Keywords

Navigation