Skip to main content
Log in

Facile fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks for enhanced toluene adsorption capacity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of a simple and facile synthesis route is a highly desirable but challenging process in the fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks (ZIFs). Herein we describe a facile method for rapidly synthesizing hierarchically porous ZIF-90 nanocrystals (particle sizes of ~ 300 nm) using hydroxyl double salts as intermediates at room temperature. The as-synthesized ZIF-90 contained hierarchical porous structures developed using a crystalline interior and a random stack of multiple nanoparticles. Both the morphology and particle size of ZIF-90 nanocrystals could be tuned by controlling the molar ratio of ICA/Zn2+. Note that the as-synthesized hierarchically porous ZIF-90 nanocrystals exhibited higher thermal stability compared with the conventional ZIF-90. Because of the introduction of hierarchical porous structures, the resultant hierarchically porous ZIF-90 nanocrystals showed enhanced toluene adsorption capacity than those of conventional metal organic frameworks and zeolites.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. P Natl Acad Sci. 2006;103(27):10186.

    CAS  Google Scholar 

  2. Saliba D, Ammar M, Rammal M, Al-Ghoul M, Hmadeh M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J Am Chem Soc. 2018;140(5):1812.

    CAS  Google Scholar 

  3. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413.

    CAS  Google Scholar 

  4. Duan C, Li F, Xiao J, Liu Z, Li C, Xi H. Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci China Mater. 2017;60(12):1205.

    CAS  Google Scholar 

  5. Zhang H, Huo J, Yang H, Li F, Duan C, Xi H. Green and rapid preparation of hierarchically porous metal–organic zeolites and simulation of their growth. J Mater Chem A. 2019;7(3):1022.

    CAS  Google Scholar 

  6. Matatagui D, Sainz-Vidal A, Gràcia I, Figueras E, Cané C, Saniger J. Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensor Actuat B-Chem. 2018;274:601.

    CAS  Google Scholar 

  7. Deng J, Wang K, Wang M, Yu P, Mao L. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. J Am Chem Soc. 2017;139(16):5877.

    CAS  Google Scholar 

  8. Duan C, Yu Y, Xiao J, Li Y, Yang P, Hu F, Xi H. Recent advancements in metal–organic frameworks for green applications. Green Energy Environ. 2020. https://doi.org/10.1016/j.gee.2020.04.006.

    Article  Google Scholar 

  9. Li B, Zhang GX, Huang KS, Qiao LF, Pang H. One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Met. 2017;36(5):457.

    CAS  Google Scholar 

  10. Zanon A, Verpoort F. Metals@ZIFs: catalytic applications and size selective catalysis. Coordin Chem Rev. 2017;353:201.

    CAS  Google Scholar 

  11. Duan C, Yu Y, Xiao J, Zhang X, Li L, Yang P, Wu J, Xi H. Water-based routes for synthesis of metal-organic frameworks: a review. Sci China Mater. 2020;63(5):667.

    Google Scholar 

  12. Huang A, Dou W, Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J Am Chem Soc. 2010;132(44):15562.

    CAS  Google Scholar 

  13. Shieh FK, Wang SC, Leo SY, Wu KCW. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem-Eur J. 2013;19(34):11139.

    CAS  Google Scholar 

  14. Bae TH, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angew Chem Int Edit. 2010;49(51):9863.

    CAS  Google Scholar 

  15. Brown AJ, Johnson J, Lydon ME, Koros WJ, Jones CW, Nair S. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angew Chem Int Edit. 2012;51(42):10615.

    CAS  Google Scholar 

  16. Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc. 2008;130(38):12626.

    CAS  Google Scholar 

  17. Duan C, Yu Y, Yang P, Zhang X, Li F, Li L, Xi H. Engineering new defects in MIL-100(Fe) via a mixed-ligand approach to effect enhanced volatile organic compound adsorption capacity. Ind Eng Chem Res. 2020;59(2):774.

    CAS  Google Scholar 

  18. Wu Z, Zhao D. Ordered mesoporous materials as adsorbents. Chem Commun. 2011;47(12):3332.

    CAS  Google Scholar 

  19. Wu YN, Zhou M, Zhang B, Wu B, Li J, Qiao J, Guan X, Li F. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale. 2014;6(2):1105.

    CAS  Google Scholar 

  20. Zhang H, Duan C, Li F, Yan X, Xi H. Green and rapid synthesis of hierarchical porous zeolitic imidazolate frameworks for enhanced CO2 capture. Inorg Chim Acta. 2018;482:358.

    CAS  Google Scholar 

  21. Kim D, Kim DW, Hong WG, Coskun A. Graphene/ZIF-8 composites with tunable hierarchical porosity and electrical conductivity. J Mater Chem A. 2016;4(20):7710.

    CAS  Google Scholar 

  22. Huang CX, Wang XC, Liang C, Jiang X, Yang G, Xu J, Yong Q. A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol Biofuels. 2019;12:13.

    Google Scholar 

  23. Wang K, Li LW, Xue W, Zhou SZ, Lan Y, Zhang HW, Sui ZQ. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. Int J Electrochem Sci. 2017;12(9):8306.

    CAS  Google Scholar 

  24. Zhou Y, Wang Y, Wang K, Kang L, Peng F, Wang L, Pang J. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Appl Energy. 2020;260:114169.

    Google Scholar 

  25. Zhou HJ, Zheng MB, Tang H, Xu BY, Tang Y, Pang H. amorphous intermediate derivative from ZIF-67 and its outstanding electrocatalytic activity. Small. 2020;16(2):9.

    Google Scholar 

  26. Zhu RM, Ding JW, Jin L, Pang H. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coordin Chem Rev. 2019;389:119.

    CAS  Google Scholar 

  27. Garzón-Tovar L, Carné-Sánchez A, Carbonell C, Imaz I, Maspoch D. Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. J Mater Chem A. 2015;3(41):20819.

    Google Scholar 

  28. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem Mater. 2011;23(8):2130.

    CAS  Google Scholar 

  29. Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21(8):1410.

    CAS  Google Scholar 

  30. Gross AF, Sherman E, Vajo JJ. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton T. 2012;41(18):5458.

    CAS  Google Scholar 

  31. Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem Soc Rev. 2020;49(1):301.

    CAS  Google Scholar 

  32. Wang K, Li L, Lan Y, Dong P, Xia G. Application research of chaotic carrier frequency modulation technology in two-stage matrix converter. Math Probl Eng. 2020. https://doi.org/10.1155/2019/2614327.

    Article  Google Scholar 

  33. Kim M-K, Kim D, Seo JY, Buyukcakir O, Coskun A. Nanostructured ZnO as a structural template for the growth of ZIF-8 with tunable hierarchical porosity for CO2 conversion. CrystEngComm. 2017;19(29):4147.

    CAS  Google Scholar 

  34. Duan C, Li F, Luo S, Xiao J, Li L, Xi H. Facile synthesis of hierarchical porous metal-organic frameworks with enhanced catalytic activity. Chem Eng J. 2018;334(Supplement C):1477.

    CAS  Google Scholar 

  35. Duan C, Zhang H, Li F, Xiao J, Luo S, Xi H. Hierarchically porous metal–organic frameworks: rapid synthesis and enhanced gas storage. Soft Matter. 2018;14(47):9589.

    CAS  Google Scholar 

  36. Li F, Zheng K, Zhang H, Duan C, Xi H. Nanoscale hierarchically porous metal-organic frameworks: facile synthesis, mechanism research, and application. ACS Sustain Chem Eng. 2019;7(13):11080.

    CAS  Google Scholar 

  37. Duan C, Li F, Zhang H, Li J, Wang X, Xi H. Template synthesis of hierarchical porous metal-organic frameworks with tunable porosity. RSC Adv. 2017;7(82):52245.

    CAS  Google Scholar 

  38. Perez EV, Balkus KJ Jr, Ferraris JP, Musselman IH. Mixed-matrix membranes containing MOF-5 for gas separations. J Membrane Sci. 2009;328(1–2):165.

    CAS  Google Scholar 

  39. Duan C, Yu Y, Li F, Wu Y, Xi H. Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks with high space–time yields. CrystEngComm. 2020;22(15):2675.

    CAS  Google Scholar 

  40. Mai HD, Rafiq K, Yoo H. Nano metal-organic framework-derived inorganic hybrid nanomaterials: synthetic strategies and applications. Chem-Eur J. 2017;23(24):5631.

    CAS  Google Scholar 

  41. Zhao J, Nunn WT, Lemaire PC, Lin Y, Dickey MD, Oldham CJ, Walls HJ, Peterson GW, Losego MD, Parsons GN. Facile conversion of hydroxy double salts to metal-organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J Am Chem Soc. 2015;137(43):13756.

    CAS  Google Scholar 

  42. Meyn M, Beneke K, Lagaly G. Anion-exchange reactions of hydroxy double salts. Inorg Chem. 1993;32(7):1209.

    CAS  Google Scholar 

  43. Zhuang JL, Ceglarek D, Pethuraj S, Terfort A. Rapid room-temperature synthesis of metal-organic framework HKUST-1 crystals in bulk and as oriented and patterned thin films. Adv Funct Mater. 2011;21(8):1442.

    CAS  Google Scholar 

  44. Yang C, Miao G, Pi Y, Xia Q, Wu J, Li Z, Xiao J. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem Eng J. 2019;370:1128.

    CAS  Google Scholar 

  45. Zhou DD, Zhang XW, Mo ZW, Xu YZ, Tian XY, Li Y, Chen XM, Zhang JP. Adsorptive separation of carbon dioxide: from conventional porous materials to metal–organic frameworks. EnergyChem. 2019;1(3):100016.

    Google Scholar 

  46. Mohammed J, Nasri NS, Zaini MAA, Hamza UD, Ani FN. Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3. Int Biodeter Bioderg. 2015;102:245.

    CAS  Google Scholar 

  47. Duan C, Li F, Yang M, Zhang H, Wu Y, Xi H. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity. Ind Eng Chem Res. 2018;57(45):15385.

    CAS  Google Scholar 

  48. Duan C, Zhang H, Yang M, Li F, Yu Y, Xiao J, Xi H. Templated fabrication of hierarchically porous metal–organic frameworks and simulation of crystal growth. Nanoscale Adv. 2019;1(3):1062.

    CAS  Google Scholar 

  49. Li Y, Miao J, Sun X, Xiao J, Li Y, Wang H, Xia Q, Li Z. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem Eng J. 2016;298:191.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21576094), the Guangdong Natural Science Foundation (No. 2017A030313052) and the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110706, 2019A1515110259 and 2019A1515110535).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong-Xiong Duan or Hong-Xia Xi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, MH., Duan, CX., Zeng, XJ. et al. Facile fabrication of nanoscale hierarchical porous zeolitic imidazolate frameworks for enhanced toluene adsorption capacity. Rare Met. 40, 471–477 (2021). https://doi.org/10.1007/s12598-020-01455-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01455-9

Keywords

Navigation