Skip to main content
Log in

A highly efficient pathway to recover gold from acid aqueous solution by using an amidoxime-functionalized UHMWPE fiber

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A new amidoxime-functionalized ultrahigh molecular weight polyethylene fibrous adsorbent (UHMWPE-g-PAO) was used for the recovery of Au(III) from acid aqueous solution. The maximum experimental absorption capacity of UHMWPE-g-PAO fiber was found to be approximately 220.0 mg·g−1. Au adsorption on UHMWPE-g-PAO was characterized by synchrotron radiation-based microcomputed tomography (SR-μ-CT), transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES) and synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR). The SR-μ-CT and TEM results showed the distribution features of gold particles on the fiber. The mechanism of Au(III) recovery from aqueous solutions by UHMWPE-g-PAO was based on the adsorbed Au(III) ions, which were reduced to metallic zero-valent gold (Au(0)) by amino groups (–NH2) in the amidoxime (AO) groups during the adsorption process, as confirmed by high-resolution TEM (HRTEM) and XANES analyses. X-ray diffraction (XRD) results indicated that the incineration ashes contained metallic zero-valent gold. In conclusion, this amidoxime-functionalized fibrous adsorbent is a promising material for recovering gold from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corti CW, Holliday RJ. Commercial aspects of gold applications: from materials science to chemical science. Gold Bull. 2004;37(1–2):20.

    CAS  Google Scholar 

  2. Zhang Y, Cui XJ, Shi F, Deng YF. Nano-gold catalysis in fine chemical synthesis. Chem Rev. 2012;112(4):2467.

    CAS  Google Scholar 

  3. Wang M, Wang F, Ma JP, Li MR, Zhang Z, Wang YH, Zhang XC, Xu J. Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chem Commun. 2014;50(3):292.

    CAS  Google Scholar 

  4. Cui JR, Zhang LF. Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater. 2008;158(2–3):228.

    CAS  Google Scholar 

  5. Pant D, Joshi D, Upreti MK, Kotnala RK. Chemical and biological extraction of metals present in e waste: a hybrid technology. Waste Manag. 2012;32(5):979.

    CAS  Google Scholar 

  6. Zhang XL, Chen SY, Zhou L, Fan SM, Chen KH. Progress in recovery of platinum and palladium from spent catalysts by hydrometallurgical methods. Chin J Rare Met. 2018;42(12):1323.

    Google Scholar 

  7. Macaskie LE, Creamer NJ, Essa AM, Brown NL. A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap. Biotechnol Bioeng. 2007;96(4):631.

    CAS  Google Scholar 

  8. Liu G, Yan TL, Wu YZ, Yi XH, Chen B, Li RW. Polyaniline-poly(vinylidene fluoride) blend microfiltration membrane and its spontaneous gold recovery application. Sci China Chem. 2018;61(1):118.

    Google Scholar 

  9. Aguayo S, Valenzuela JL, Parga JR, Lewis RG, Cruz M. Continuous laboratory gold solvent extraction from cyanide solutions using LIX 79 reagent. Chem Eng Technol. 2007;30(11):1532.

    CAS  Google Scholar 

  10. Wang FC, Zhao JM, Wang WK, Tong ZZ. Adsorption of Au(III) by amino-modified monodispersed PGMA microspheres and the deposition of gold nanoparticles. Rare Met. 2018;37(3):196.

    CAS  Google Scholar 

  11. Firlak M, Yetimoǧlu EK, Kahraman MV, Apohan NK. Removal of lead and cadmium ions from aqueous solutions using sulphur and oxygen donor ligand bearing hydrogels. Sep Sci Technol. 2009;45(1):116.

    Google Scholar 

  12. Wojnicki M, Rudnik E, Luty-Błocho M, Socha RP, Pędzich Z, Fitzner K, Mech K. Kinetic studies of gold recovery from diluted chloride aqueous solutions using activated carbon organosorb 10 CO. Aust J Chem. 2015;69(3):254.

    Google Scholar 

  13. Wojnicki M, Luty-Błocho M, Socha RP, Mech K, Pędzich Z, Fitzner K, Rudnik E. Kinetic studies of sorption and reduction of gold(III) chloride complex ions on activated carbon Norit ROX 0.8. J Ind Eng Chem. 2015;29:289.

    CAS  Google Scholar 

  14. Wojnicki M, Socha RP, Luty-Błocho M, Partyka B, Polański M, Deszcz P, Kołczyk K, Żabiński P. Study of gold, copper and nickel adsorption, from their acidic chloride solutions, onto activated carbon. Arch Metall Mater. 2018;63(1):73.

    CAS  Google Scholar 

  15. Mohammadnejad S, Provis JL, Deventer JSJV. Gold sorption by silicates in acidic and alkaline chloride media. Int J Miner Process. 2011;100(3–4):149.

    CAS  Google Scholar 

  16. Xing Z, Wang MH, Liu WH, Hu JT, Wu GZ. Crystal structure and mechanical properties of UHMWPE-g-PMA fiber prepared by radiation grafting. Radiat Phys Chem. 2013;86:84.

    CAS  Google Scholar 

  17. Fisch AG Jr, Silveira ND, Cardozo NSM, Secchi AR, Santos JHZD, Soares JBP. Direct production of ultra-high molecular weight polyethylene with oriented crystalline microstructures. J Mol Catal A Chem. 2013;366:74.

    CAS  Google Scholar 

  18. Wan CX, Cao T, Li J, Lv F, Zhang WH, Li LB. Modification of UHMWPE porous fibers by acrylic acid and its adsorption kinetics for Cu2+ removal. Polym Bull. 2017;74(9):3855.

    CAS  Google Scholar 

  19. Hu JT, Ma HJ, Xing Z, Liu XY, Xu L, Li R, Lin CJ, Wang MH, Li JY, Wu GZ. Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind Eng Chem Res. 2016;55(15):4118.

    CAS  Google Scholar 

  20. Gao QH, Hu JT, Li R, Xing Z, Xu L, Wang MH, Guo XJ, Gz W. Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat Phys Chem. 2016;122:1.

    Google Scholar 

  21. Pang LJ, Li R, Gao QH, Hu JT, Xing Z, Zhang MX, Wang MH, Wu GZ. Functionalized and reusable polyethylene fibres for Au(III) extraction from aqueous solution with high adsorption capacity and selectivity. RSC Adv. 2016;6(90):87221.

    CAS  Google Scholar 

  22. Xing Z, Hu JT, Wang MH, Zhang WL, Li SN, Gao QH, Wu GZ. Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci China Chem. 2013;56(11):1504.

    CAS  Google Scholar 

  23. Zhang YP, Ersoy O, Karatutlu A, Little W, Sapelkin A. Local structure of Ge quantum dots determined by combined numerical analysis of EXAFS and XANES data. J Synchrotron Radiat. 2016;23(1):253.

    CAS  Google Scholar 

  24. Ogata T, Nakano Y. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res. 2005;39(18):4281.

    CAS  Google Scholar 

  25. Qu RJ, Sun CM, Wang MH, Ji CN, Xu Q, Zhang Y, Wang CH, Chen H, Yin P. Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy. 2009;100(1–2):65.

    CAS  Google Scholar 

  26. Saman N, Rashid MU, Lye JWP, Mat H. Recovery of Au(III) from an aqueous solution by aminopropyltriethoxysilane-functionalized lignocellulosic based adsorbents. React Funct Polym. 2018;123:106.

    CAS  Google Scholar 

  27. Kanagare AB, Singh KK, Kumar M, Yadav M, Ruhela R, Singh AK, Kumar A, Shinde VS. DTDGA-impregnated XAD-16 beads for separation of gold from electronic waste solutions. Ind Eng Chem Res. 2016;55(49):12644.

    CAS  Google Scholar 

  28. Ebrahimzadeh H, Shekari N, Tavassoli N, Amini MM, Adineh M, Sadeghi O. Extraction of trace amounts of silver on various amino-functionalized nanoporous silicas in real samples. Microchim Acta. 2010;170(1–2):171.

    CAS  Google Scholar 

  29. Monier M, Akl MA, Ali W. Preparation and characterization of selective phenyl thiosemicarbazide modified Au(III) ion-imprinted cellulosic cotton fibers. J Appl Polym Sci. 2014;131(18):40769.

    Google Scholar 

  30. Shamspur T, Mostafavi A. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). J Hazard Mater. 2009;168(2–3):1548.

    CAS  Google Scholar 

  31. Wang HF, Bao CL, Li F, Kong XF, Xu JJ. Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Microchim Acta. 2010;168(1–2):99.

    CAS  Google Scholar 

  32. Albishri HM, Marwani HM. Chemically modified activated carbon with tris(hydroxymethyl)aminomethane for selective adsorption and determination of gold in water samples. Arab J Chem. 2016;9(S1):S252.

    CAS  Google Scholar 

  33. Gentscheva G, Tzvetkova P, Vassileva P, Lakov L, Peshev O, Ivanova E. Analytical characterization of a silica gel sorbent with thioetheric sites. Microchim Acta. 2006;156(3–4):303.

    CAS  Google Scholar 

  34. Fu LK, Zhang LB, Wang SX, Zhang GW, Peng JH. Selective recovery of Au(III) from aqueous solutions by nano-silica grafted with 4-(aminomethyl) pyridine. J Sol Gel Sci Technol. 2017;83(2):467.

    CAS  Google Scholar 

  35. Tofan L, Bunia I, Paduraru C, Teodosiu C. Synthesis, characterization and experimental assessment of a novel functionalized macroporous acrylic copolymer for gold separation from wastewater. Process Saf Environ Prot. 2017;106:150.

    CAS  Google Scholar 

  36. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem. 1918;40(12):1361.

    CAS  Google Scholar 

  37. Freundlich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:385.

    CAS  Google Scholar 

  38. Tanaka T, Ohyama J, Teramura K, Hitomi Y. Formation mechanism of metal nanoparticles studied by XAFS spectroscopy and effective synthesis of small metal nanoparticles. Catal Today. 2012;183(1):108.

    CAS  Google Scholar 

  39. Watzky MA, Finke RG. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc. 1997;119(43):10382.

    CAS  Google Scholar 

  40. Meire M, Tack P, Keukeleere KD, Balcaen L, Pollefeyt G, Vanhaecke F, Vincze L, Voort PVD, Driessche IV, Lommens P. Gold/titania composites: an X-ray absorption spectroscopy study on the influence of the reduction method. Spectrochim Acta Part B. 2015;110:45.

    CAS  Google Scholar 

  41. Sun CJ, Yang H, Yuan Y, Tian X, Wang LM, Guo Y, Xu L, Lei JL, Gao N, Anderson GJ, Liang XJ, Chen CY, Zhao YL, Nie GJ. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J Am Chem Soc. 2011;133(22):8617.

    CAS  Google Scholar 

  42. Choi SH, Nho YC. Radiation-induced graft copolymerization of binary monomer mixture containing acrylonitrile onto polyethylene films. Radiat Phys Chem. 2000;58(2):157.

    CAS  Google Scholar 

  43. Huang FL, Xu YF, Liao SQ, Yang DW, Hsieh YL, Wei QF. Preparation of amidoxime polyacrylonitrile chelating nanofibers and their application for adsorption of metal ions. Materials. 2013;6(3):969.

    CAS  Google Scholar 

  44. Parajuli D, Hirota K, Inoue K. Trimethylamine-modified lignophenol for the recovery of precious metals. Ind Eng Chem Res. 2009;48(23):10163.

    CAS  Google Scholar 

  45. Ma HJ, Chi HY, Wu JX, Wang M, Li JY, Hoshina H, Saiki S, Seko N. A novel avenue to gold nanostructured microtubes using functionalized fiber as the ligand, the reductant, and the template. ACS Appl Mater Interfaces. 2013;5(17):8761.

    CAS  Google Scholar 

  46. Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A. 2009;73(2):374.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 21677116, 91543118, 11775289 and 11275256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Jin or Xiang-Jun Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YL., Jin, C., Hu, JT. et al. A highly efficient pathway to recover gold from acid aqueous solution by using an amidoxime-functionalized UHMWPE fiber. Rare Met. 38, 1105–1112 (2019). https://doi.org/10.1007/s12598-019-01317-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01317-z

Keywords

Navigation