Skip to main content
Log in

Fabrication of nano-grained negative temperature coefficient thermistors with high electrical stability

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Dense nano-grained Ni0.7Mn2.3O4 negative temperature coefficient (NTC) thermistors were fabricated by a novel two-step sintering approach that combines rapid sintering and principle of conventional two-step sintering technique. Samples were sintered at 1042 °C for 30 s in the first rapid step and then at 850–950 °C for 20 h in the second soaking step. Crystal phase, microstructure and electrical properties of sintered samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), resistance temperature relationship and aging performance. Sintered samples show a single-phase cubic spinel structure and indicate a high relative density ranging from 84% to 91% of the theoretical density. Moreover, average grain sizes of sintered samples under SEM are distributed between 254 and 570 nm. Meanwhile, the resistivity and the aging coefficient significantly decrease when soaking sintering temperature rises. In addition, the obtained material constant (B) ranges from 3931 to 3981 K. Ni0.7Mn2.3O4-3 (soaking at 900 °C) and Ni0.7Mn2.3O4-4 (soaking at 950 °C) present little aging behavior, implying great electrical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kang JE, Ryu J, Han G, Choi JJ, Yoon WH, Hahn BD, Kim JW, Ahn CW, Choi JH, Park DS. LaNiO3 conducting particle dispersed NiMn2O4 nanocomposite NTC thermistor thick films by aerosol deposition. J Alloys Compd. 2012;534(5):70.

    Article  CAS  Google Scholar 

  2. Ma CJ, Gao H. Preparation and characterization of single-phase NiMn2O4 NTC ceramics by two-step sintering method. J Mater Sci: Mater Electron. 2017;28(9):6699.

    CAS  Google Scholar 

  3. Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc. 2009;92(5):967.

    Article  CAS  Google Scholar 

  4. Veres A, Noudem J, Perez O, Fourrez S, Bailleul G. Manganese based spinel—like ceramics with NTC—type thermistor behaviour. Solid State Ion. 2007;178(5–6):423.

    Article  CAS  Google Scholar 

  5. Luo W, Yao HM, Yang PH, Chen CS. Negative temperature coefficient material with low thermal constant and high resistivity for low-temperature thermistor applications. J Am Ceram Soc. 2009;92(11):2682.

    Article  CAS  Google Scholar 

  6. Park K, Lee JK. Mn–Ni–Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications. Scripta Mater. 2007;57(4):329.

    Article  CAS  Google Scholar 

  7. Park K, Lee JK. The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95−xNi0.45Co0.15Cu0.45ZnxO4 (0≤x≤0.3) NTC thermistors. J Alloys Compd. 2009;475(1–2):513.

    Article  CAS  Google Scholar 

  8. Zhang DY, Zhang HM, Jin XJ, Chang AM. Preparation and thermal sensitive characteristics of the Co0.8Mn0.8Ni0.9Fe0.5O4 nanometer powders. J Inorg Mater. 2009;24(5):1008.

    Article  CAS  Google Scholar 

  9. Yue ZX, Shan JH, Qi XW, Wang XH, Zhou J, Gui ZL, Li LT. Synthesis of nanocrystalline manganite powders via a gel autocombustion process for NTC thermistor applications. Mater Sci Eng B Solid State Mater Adv Technol. 2003;99(1–3):217.

    Article  Google Scholar 

  10. Wang WM, Liu XC, Gao F, Tian CS. Synthesis of nanocrystalline Ni1Co0.2Mn1.8O4 powders for NTC thermistor by a gel auto-combustion process. Ceram Int. 2007;33(3):459.

    Article  Google Scholar 

  11. Hardal G, Price BY. Influence of nano-sized cobalt oxide additions on the structural and electrical properties of nickel-manganite-based NTC thermistors. Mater Tehnol. 2016;50(6):923.

    Article  Google Scholar 

  12. Lóh NJ, Simão L, Faller CA, De Noni A, Montedo ORK. A review of two-step sintering for ceramics. Ceram Int. 2016;42(11):12556.

    Article  Google Scholar 

  13. Tong JH, Clark D, Hoban M, O’Hayre R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion. 2010;181(11–12):496.

    Article  CAS  Google Scholar 

  14. Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature. 2000;404(6774):168.

    Article  CAS  Google Scholar 

  15. Wang XH, Deng XY, Bai HL, Zhou H, Qu WG, Li LT, Chen IW. Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni–Cu–Zn ferrite. J Am Ceram Soc. 2006;89(2):438.

    Article  CAS  Google Scholar 

  16. Sun JL, Zhao J, Ni XY, Gong F, Li ZL. Fabrication of dense nano-laminated tungsten carbide materials doped with Cr3C2/VC through two-step sintering. J Eur Ceram Soc. 2018;38(9):3096.

    Article  CAS  Google Scholar 

  17. Zhou EM, Zheng H, Zheng L, Zheng P, Ying ZH, Deng JX, Zhou JJ. Synthesis of dense, fine-grained hexagonal barium ferrite ceramics by two-step sintering process. Int J ACT. 2018;15(4):1023.

    CAS  Google Scholar 

  18. Chen L, Wang JH, Huang CP, Zhang QA, Chang SN, Chang AM, Yao JC. High performance of Ni0.9Mn1.8Mg0.3O4 spinel nanoceramic microbeads via inkjet printing and two step sintering. RSC Adv. 2016;6(41):35118.

    Article  CAS  Google Scholar 

  19. Zhang HM, Chang AM, Guan F, Zhao LJ, Zhao Q, Yao JC, Huang X. The optimal synthesis condition by sol–gel method and electrical properties of Mn1.5−xCo1.5NixO4 ceramics. Ceram Int. 2014;40(6):7865.

    Article  CAS  Google Scholar 

  20. Yan YT, Chen WD, Bai B, Ju HM, Zhang SJ, Xu ZG. Zirconia films prepared by sol-gel method on surface of ZrH1.8 in different heat treatment atmospheres. Chin J Rare Met. 2017;41(2):179.

    Google Scholar 

  21. Yang CS, Chen B, Wang F, Zheng JP, Zhao JX. Fabrication of high strength scandium oxide ceramics. Chin J Rare Met. 2017;41(2):163.

    Google Scholar 

  22. Lu K. Sintering of nanoceramics. Int Mater Rev. 2008;53(1):21.

    Article  CAS  Google Scholar 

  23. Chaim R, Shlayer A, Estournes C. Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J Eur Ceram Soc. 2009;29(1):91.

    Article  CAS  Google Scholar 

  24. Bernard-Granger G, Néri A, Navone C, Soulier M, Simon J, Marinova-Atanassova M. Spark plasma sintering of a p-type Si1−xGex alloy: identification of the densification mechanism by isothermal and anisothermal methods. Mater Sci. 2012;47(10):4313.

    Article  CAS  Google Scholar 

  25. Yang T, Zhang B, Zhao Q, He DL, Luo P, Chang AM. Vacuum hot pressed highly dense, nanograined Mg(Al1−xCrx)2O4 ceramics. Mater Lett. 2017;194:42.

    Article  CAS  Google Scholar 

  26. Hosseini SM, Shohany BG, Azad N, Kompany A. Low temperature synthesis and electronic properties of Ntc temperature sensor spinel-type oxides nanopowders. J Nanosci. 2011;10(3):479.

    Article  CAS  Google Scholar 

  27. Park K, Kim SJ, Kim JG, Nahm S. Structural and electrical properties of MgO-doped Mn1.4Ni1.2Co0.4−xMgxO4 (0≤x≤ 0.25) NTC thermistors. J Eur Ceram Soc. 2007;27(4):2009.

    Article  CAS  Google Scholar 

  28. Zhang B, Zhao Q, Am Chang, Li YY, Liu Y, Wu YQ. Spark plasma sintering of MgAl2O4-YCr0.5Mn0.5O3 composite NTC ceramics. J Eur Ceram Soc. 2014;34(12):2989.

    Article  CAS  Google Scholar 

  29. Li DF, Zhao SX, Xiong K, Bao HQ, Nan CW. Aging improvement in Cu-containing NTC ceramics prepared by co-precipitation method. J Alloys Compd. 2014;582:283.

    Article  CAS  Google Scholar 

  30. Liang S, Cao CG, Yuan Y, Li HB, Luo M, Gao MM, Zhang X. Hydrothermal synthesis of Zn-doped Ni–Mn–Al–O thin films toward high-performance negative temperature coefficient thermistor. J Mater Sci: Mater Electron. 2018;29(11):9025.

    CAS  Google Scholar 

  31. Zhang B, Zhao Q, Chang AM, Wu YQ, Li HY. Spark plasma sintering of MgAl2O4-LaCr0.5Mn0.5O3 composite thermistor ceramics and a comparison investigation with conventional sintering. J Alloys Comp. 2016;675:381.

    Article  CAS  Google Scholar 

  32. Fang DL, Zheng CH, Chen CS, Winnubst AJA. Aging of nickel manganite NTC ceramics. J Electroceram. 2008;22(4):421.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51302138 and 21663001) and the Western Light Talent Training Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, MM., Zhang, X., Liu, KG. et al. Fabrication of nano-grained negative temperature coefficient thermistors with high electrical stability. Rare Met. 40, 1014–1019 (2021). https://doi.org/10.1007/s12598-019-01294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01294-3

Keywords

Navigation