Skip to main content
Log in

Dehydrogenation characteristics of ZrC-doped LiAlH4 with different mixing conditions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The catalytic effects of ZrC powder on the dehydrogenation properties of LiAlH4 prepared by designed mixing processes were systematically investigated. The onset dehydrogenation temperatures for the 10 mol% ZrC-doped sample are 85.3 and 148.4 °C for the first two dehydrogenation stages, decreasing by 90.7 and 57.8 °C, respectively, compared with those of the as-received LiAlH4. The isothermal volumetric measurement indicates that adding ZrC powder could significantly enhance the desorption kinetics of LiAlH4. The reaction constant and Avrami index show that the first dehydrogenation stage is controlled by diffusion mechanism with nucleation rate gradually decreasing and the second stage is a freedom nucleation and subsequent growth process. The microstructures and phase transformation characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) reveal that the improved desorption behavior of LiAlH4 is primarily due to the high density of surface defects and embedded catalyst particles on the surface of LiAlH4 particles during the high-energy mixing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Y, Tao Y, Huo Q. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys. Rare Met. 2015;22(1):86.

    Google Scholar 

  2. Li LG, Li SF, Tan YB, Tang ZW, Cai WY, Guo YH, Li Q, Yu XB. Hydrogen generation from hydrolysis and methanolysis of guanidinium borohydride. J Phys Chem C. 2012;116(27):14218.

    CAS  Google Scholar 

  3. Li P, Li ZL, Zhai FQ, Wan Q, Li XQ, Qu XH, Volinsky AA. NiFe2O4 Nanoparticles catalytic effects of improving LiAlH4 dehydrogenation properties. J Phys Chem C. 2013;117(49):25917.

    CAS  Google Scholar 

  4. Zheng XP, Zheng JJ, Ma QH, Liu SL, Feng X, Lin XB, Xiao G. Study on dehydrogenation properties of the LiAlH4–NH4Cl system. J Alloys Compd. 2013;551:508.

    CAS  Google Scholar 

  5. Li ZL, Zhai FQ, Wan Q, Liu ZJ, Shan JW, Li P, Volinsky AA, Qu XH. Enhanced hydrogen storage properties of LiAlH4 catalyzed by CoFe2O4 nanoparticles. RSC Adv. 2014;4:18989.

    CAS  Google Scholar 

  6. Wan Q, Li P, Li ZL, Zhao KF, Liu ZW, Wang L, Zhai FQ, Qu XH, Volinsky AA. NaAlH4 dehydrogenation properties enhanced by MnFe2O4 nanoparticles. J Power Sources. 2014;248:388.

    CAS  Google Scholar 

  7. Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd. 1997;253–254:1.

    Google Scholar 

  8. Andreasen A, Veggea T, Pedersena AS. Dehydrogenation kinetics of as-received and ball-milled LiAlH4. J Solid State Chem. 2005;178(12):3672.

    CAS  Google Scholar 

  9. Langmi HW, McGrady GS, Liu XF, Jensen CM. Modification of the H2 desorption properties of LiAlH4 through doping with Ti. J Phys Chem C. 2010;114(23):10666.

    CAS  Google Scholar 

  10. Balema VP, Pecharsky VK, Dennis KW. Solid state phase transformations in LiAlH4 during high-energy ball-milling. J Alloys Compd. 2000;313(1–2):69.

    CAS  Google Scholar 

  11. Varin RA, Zbroniec L. Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects. J. Alloys Compd. 2010;504(1):89.

    CAS  Google Scholar 

  12. Vittetoe AW, Niemann MU, Srinivasan SS, McGrath K, Kumar A, Goswami DY. Destabilization of LiAlH4 by nanocrystalline MgH2. Int J Hydrogen Energy. 2009;34(5):2333.

    CAS  Google Scholar 

  13. Mao JF, Guo ZP, Leng HY, Wu Z, Guo YH, Yu XB, Liu HK. Reversible hydrogen storage in destabilized LiAlH4−MgH2−LiBH4 ternary-hydride system doped with TiF3. J Phys Chem C. 2010;114(26):11643.

    CAS  Google Scholar 

  14. Ismail M, Zhao Y, Yu XB, Dou SX. Effect of different additives on the hydrogen storage properties of the MgH2–LiAlH4 destabilized system. RSC Adv. 2011;1:408.

    CAS  Google Scholar 

  15. Wan Q, Li P, Li ZL, Zhai FQ, Qu XH, Volinsky AA. Improved hydrogen storage performance of MgH2–LiAlH4 composite by addition of MnFe2O4. J Phys Chem C. 2013;117(51):26940.

    CAS  Google Scholar 

  16. Resan M, Hampton MD, Lomness JK, Slattery DK. Effects of various catalysts on hydrogen release and uptake characteristics of LiAlH4. Int J Hydrogen Energy. 2005;30(13–14):1413.

    CAS  Google Scholar 

  17. Hima KL, Viswanathan B, Srinivasa MS. Dehydriding behaviour of LiAlH4-the catalytic role of carbon nanofibers. Int J Hydrogen Energy. 2008;33(1):366.

    Google Scholar 

  18. Rafi UD, Zhang L, Li P, Qu XH. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4. J Alloys Compd. 2010;508(1):119.

    Google Scholar 

  19. Li ZL, Li P, Wan Q, Zhai FQ, Liu ZW, Zhao KF, Wang L, Lv SY, Zou L, Qu XH, Volinsky AA. Dehydrogenation improvement of LiAlH4 catalyzed by Fe2O3 and Co2O3 nanoparticles. J Phys Chem C. 2013;117(36):18343.

    CAS  Google Scholar 

  20. Pang YP, Liu YF, Gao MX, Ouyang LZ, Liu JW, Wang H, Zhu M, Pan HG. A mechanical-force-driven physical vapor deposition approach to fabricating complex hydride nanostructures. Nature Commun. 2014;5:3519.

    Google Scholar 

  21. Wahab MA, Beltramini JN. Catalytic nanoconfinement effect of in situ synthesized Ni-containing mesoporous carbon scaffold (Ni–MCS) on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy. 2014;39(32):18280.

    CAS  Google Scholar 

  22. Chumphongphan S, Fils U, Paskevicius M, Sheppard DA, Jensen TR, Buckley CE. Nanoconfinement degradation in NaAlH4/CMK-1. Int J Hydrogen Energy. 2014;39(21):11103.

    CAS  Google Scholar 

  23. Jongh PE, Allendorf M, Vajo JJ, Zlotea C. Nanoconfined light metal hydrides for reversible hydrogen storage. MRS Bull. 2013;38(6):488.

    Google Scholar 

  24. Rangsunvigit P, Purasaka P, Chaisuwan T, Kitiyanan B, Kulprathipanja S. Effects of carbon-based materials and catalysts on the hydrogen desorption/absorption of LiAlH4. Chem Lett. 2012;41(10):1368.

    CAS  Google Scholar 

  25. Orimo S, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111.

    CAS  Google Scholar 

  26. Varin RA, Parviz R. The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation. Int J Hydrogen Energy. 2012;37(11):9088.

    CAS  Google Scholar 

  27. Rafi UD, Qu XH, Li P, Zhang L, Ahmad M. Hydrogen sorption improvement of LiAlH4 catalyzed by Nb2O5 and Cr2O3 nanoparticles. J Phys Chem C. 2011;115(26):13088.

    Google Scholar 

  28. Zheng XP, Li P, Humail IS, An FQ, Wang GQ, Qu XH. Effect of catalyst LaCl3 on hydrogen storage properties of lithium alanate (LiAlH4). Int J Hydrogen Energy. 2007;32(18):4957.

    CAS  Google Scholar 

  29. Liu XF, Beattie SD, Langmi HW, McGrady GS, Jensen CM. Ti-doped LiAlH4 for hydrogen storage: rehydrogenation process, reaction conditions and microstructure evolution during cycling. Int J Hydrogen Energy. 2012;37(3):10215.

    CAS  Google Scholar 

  30. Liu XF, McGrady GS, Langmi HW, Jensen CM. Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. J Am Chem Soc. 2009;131(14):5032.

    CAS  Google Scholar 

  31. Liu XF, Langmi HW, Beattie SD, Azenwi FF, McGrady GS, Jensen CM. Ti-doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance. J Am Chem Soc. 2011;133(39):15593.

    CAS  Google Scholar 

  32. Kojima Y, Kawai Y, Matsumoto M, Haga T. Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction. J Alloys Compd. 2008;462(1–2):275.

    CAS  Google Scholar 

  33. Ahmad M, Rafi UD, Pan CF, Zhu J. Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J Phys Chem C. 2010;114(6):2560.

    CAS  Google Scholar 

  34. Li ZB, Liu SS, Si XL, Zhang J, Jiao CL, Wang S, Liu S, Zou YJ, Sun LX, Xu F. Significantly improved dehydrogenation of LiAlH4 destabilized by K2TiF6. Int J Hydrogen Energy. 2012;37(4):3261.

    CAS  Google Scholar 

  35. Bazzanella N, Checchetto R, Miotello A. Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2. Appl Phys Lett. 2004;85:5212.

    CAS  Google Scholar 

  36. Mintz MH, Zeiri Y. Hydriding kinetics of powders. J Alloys Compd. 1995;216(2):159.

    CAS  Google Scholar 

  37. Woldt E. The relationship between isothermal and non-isothermal description of Johnson–Mehl–Avrami–Kolmogorov kinetics. J Phys Chem Solids. 1992;53(4):521.

    Google Scholar 

  38. McCarty M, Maycock JN, Verneker VRP. Thermal decomposition of lithium aluminum hydride. J Phys Chem. 1968;72(12):4009.

    CAS  Google Scholar 

  39. Andreasen A. Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride. J Alloys Compd. 2006;419(1–2):40.

    CAS  Google Scholar 

  40. Ismail M, Zhao Y, Yu XB, Dou SX. Effects of NbF5 addition on the hydrogen storage properties of LiAlH4. Int J Hydrogen Energy. 2010;35(6):2361.

    CAS  Google Scholar 

  41. Ismail M, Zhao Y, Yu XB, Nevirkovets IP, Dou SX. Significantly improved dehydrogenation of LiAlH4 catalysed with TiO2 nanopowder. Int J Hydrogen Energy. 2011;36(14):8327.

    CAS  Google Scholar 

  42. Zhai FQ, Li P, Sun AZ, Wu S, Wan Q, Zhang WN, Li YL, Cui LQ, Qu XH. Significantly improved dehydrogenation of LiAlH4 destabilized by MnFe2O4 nanoparticles. J Phys Chem C. 2012;116(22):11939.

    CAS  Google Scholar 

  43. Ares JR, Aguey-Zinsou KF, Porcu M, Sykes JM, Dornheim A, Klassen T, Bormann R. Thermal and mechanically activated decomposition of LiAlH4. Mater Res Bull. 2008;43(5):1263.

    CAS  Google Scholar 

  44. Liu SS, Zhang Y, Sun LX, Zhang J, Zhao JN, Xu F, Huang FL. The dehydrogenation performance and reaction mechanisms of Li3AlH6 with TiF3 additive. Int J Hydrogen Energy. 2010;35(10):4554.

    CAS  Google Scholar 

  45. Talyzin AV, Sundqvist B. Reversible phase transition in LiAlH4 under high-pressure conditions. Phys Rev B. 2004;70:180101.

    Google Scholar 

  46. Chang R, Graham LJ. Low-temperature elastic properties of ZrC and TiC. J Appl Phys. 1966;37:3778.

    CAS  Google Scholar 

  47. Alward JF, Pong CY. Band structures and optical properties of two transition-metal carbides-TiC and ZrC. Phys Rev B. 1975;12:1105.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (No. 2006AA05Z132) and the National Natural Science Foundation of China (No. 51471054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZL., Zhai, FQ., Qiu, HC. et al. Dehydrogenation characteristics of ZrC-doped LiAlH4 with different mixing conditions. Rare Met. 39, 383–391 (2020). https://doi.org/10.1007/s12598-016-0711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0711-x

Keywords

Navigation