Skip to main content
Log in

Sub-micron Co–Al2O3 composite powders prepared by room-temperature ultrasonic-assisted electroless plating

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sub-micron Co–Al2O3 composite powders were synthesized by ultrasonic-assisted electroless plating process at room temperature with a one-step activating method pretreatment. The effect of process parameters on plating rate, Co content, and the uniformity of cobalt layer was analyzed by transmission electron microscopy (TEM). The results show that as the initial pH values of plating bath increase, the plating rate increases. The plating rate declines as the load increases when the load of powders is less than 12 g·L−1, but increases when the load is greater than 12 g·L−1. The relative Co content of the Co–Al2O3 powder declines with the powder load increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han JC, Wang BL. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature. Acta Mater. 2011;59(4):1373.

    Article  CAS  Google Scholar 

  2. Liu CX, Zhang JH, Sun JL, Zhang XH. Tribological properties of pressureless sintered alumina matrix ceramic materials improved by diopside. J Eur Ceram Soc. 2008;28(1):199.

    Article  CAS  Google Scholar 

  3. Zhao J, Yuan XL, Zhou YH. Processing and characterization of an Al2O3/WC/TiC micro-nano-composite ceramic tool material. Mater Sci Eng, A. 2010;527(7–8):1844.

    Article  Google Scholar 

  4. Fritsch M, Klemm H, Herrmann M, Schenk B. Corrosion of selected ceramic materials in hot gas environment. J Eur Ceram Soc. 2006;26(16):3557.

    Article  CAS  Google Scholar 

  5. Li J, Sun JL, Huang LP. Effects of ductile cobalt on fracture behavior of Al2O3–TiC ceramic. Mater Sci Eng, A. 2002;323(1–2):17.

    Article  Google Scholar 

  6. Azadmehr A, Taheri-Nassaj E. An in situ (W, Ti)C–Ni composite fabricated by SHS method. J Non-Cryst Solids. 2008;354(27):3225.

    Article  CAS  Google Scholar 

  7. Vallauri D, DeBenedetti B, Jaworska L, Klimczyk P, Rodriguez MA. Wear-resistant ceramic and metal-ceramic ultrafine composites fabricated from combustion synthesised metastable powders. Int J Refract Met Hard Mater. 2009;27(6):996.

    Article  CAS  Google Scholar 

  8. Chen ZC, Takeda T, Ikeda K, Murakami T. The influence of powder particle size on microstructural evolution of metal-ceramic composites. Scripta Mater. 2000;43(12):1103.

    Article  CAS  Google Scholar 

  9. Yin ZJ, Tao SY, Zhou XM, Ding CX. Microstructure and mechanical properties of Al2O3–Al composite coatings deposited by plasma spraying. Appl Surf Sci. 2008;254(6):1636.

    Article  CAS  Google Scholar 

  10. Babakhani A, Zahabi E, Mehrabani HY. Fabrication of Fe/Al2O3 composite foam via combination of combustion synthesis and spark plasma sintering techniques. J Alloys Compd. 2012;514(2):20.

    Article  CAS  Google Scholar 

  11. Luo LM, Wu YC, Li J, Zheng YC. Preparation of nickel-coated tungsten carbide powders by room temperature ultrasonic-assisted electroless plating. Surf Coat Technol. 2011;206(6):1091.

    Article  CAS  Google Scholar 

  12. Dai JH, Liu XZ, Zhai HZ, Liu ZF, Tian JT. Preparation of Ni-coated Si3N4 powders via electroless plating method. Ceram Int. 2009;35(8):3407.

    Article  CAS  Google Scholar 

  13. Zhu SL, Tang L, Cui ZD, Wei Q, Yang XJ. Preparation of copper-coated β-SiC nanoparticles by electroless plating. Surf Coat Technol. 2011;205(8–9):2985.

    Article  CAS  Google Scholar 

  14. Ma Z, Wang JB, Liu QF, Yuan J. Microwave absorption of electroless Ni–Co–P-coated SiO2 powder. Appl Surf Sci. 2009;255(13–14):6629.

    Article  CAS  Google Scholar 

  15. Yuan YF, Tu JP, Guo SY, Wu JB, Ma M, Yang JL, Wang XL. Characteristics and electrochemical performance of Ni-coated ZnO prepared by an electroless plating process. Appl Surf Sci. 2008;254(16):5080.

    Article  CAS  Google Scholar 

  16. Li J, Huang JW, Zhou Y, Tao X. Synthesis of modified Li4Ti5O12 anode material with electroless plating nickel and its electrochemical properties. Chin J Rare Met. 2014;38(2):224.

    CAS  Google Scholar 

  17. Chen WW, Gao W, He YD. A novel electroless plating of Ni–P–TiO2 nano-composite coatings. Surf Coat Technol. 2010;204(15):2493.

    Article  CAS  Google Scholar 

  18. Wang H, Jia JF, Song HZ, Hu X, Sun HW, Yang DL. The preparation of Cu-coated Al2O3 composite powders by electroless plating. Ceram Int. 2011;37(7):2181.

    Article  CAS  Google Scholar 

  19. Jiang JT, Zhen L, Xu CY, Wu XL. Microstructure and magnetic properties of SiC/Co composite particles prepared by electroless plating. Surf Coat Technol. 2006;201(6):3139.

    Article  CAS  Google Scholar 

  20. Zhang C, Ling GP, He JH. Co–Al2O3 nanocomposites powder prepared by electroless plating. Mater Lett. 2003;58(1–2):200.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of Zhejiang Province (No. LY12E2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Guo, HB. & Gong, SK. Sub-micron Co–Al2O3 composite powders prepared by room-temperature ultrasonic-assisted electroless plating. Rare Met. 41, 1968–1971 (2022). https://doi.org/10.1007/s12598-015-0530-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0530-5

Keywords

Navigation