Skip to main content
Log in

Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Monodisperse Fe-based and Co-based nanoparticles exhibit unique magnetic properties. They play important roles in magnetic storage and biomedical application. Their chemical synthesis and performance enhancement draw a lot of study interest. Investigations of magnetic metallic nanoparticles are very active in many scientific fields. This paper reviews the present advances in chemical synthesis, performance enhancement, and potential applications of monodisperse Fe-based and Co-based nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rao CNR, Thomas PJ, Kulkarni GU. Nanocrystal: Synthesis, Properties and Application. Berlin: Springer; 2007. 9.

    Google Scholar 

  2. Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):392.

    Article  Google Scholar 

  3. Huang SH, Juang RS. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.

    Article  Google Scholar 

  4. Maenosono S, Suzukia T, Saita S. Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J Magn Magn Mater. 2008;320(9):L79.

    Article  CAS  Google Scholar 

  5. Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J Am Chem Soc. 2004;126(11):3392.

    Article  CAS  Google Scholar 

  6. Li YP, Srinivasan B, Jing Y, Yao XF, Hugger MA, Wang JP, Xing CG. Nanomagnetic competition assay for low-abundance protein biomarker quantification in unprocessed human sera. J Am Chem Soc. 2010;132(12):4388.

    Article  CAS  Google Scholar 

  7. Zhang W, Zong PS, Zheng XW, Wang LB. An enhanced sensing platform for ultrasensitive impedimetric detection of target genes based on ordered FePt nanoparticles decorated carbon nanotubes. Biosens Bioelectron. 2013;42:481.

    Article  CAS  Google Scholar 

  8. Zhang J, Post M, Veres T, Jakubek ZJ, Guan JW. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J Phys Chem B. 2006;110(14):7122.

    Article  CAS  Google Scholar 

  9. Wang C, Peng S, Lacroix LM, Sun SH. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res. 2009;2(5):380.

    Article  CAS  Google Scholar 

  10. Tanaka Y, Saita S, Maenosono S. Influence of surface ligands on saturation magnetization of FePt nanoparticles. Appl Phys Lett. 2008;92(9):093117.

    Article  Google Scholar 

  11. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele J-U, Doerner MF. High K u materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10.

  12. Christodoulides JA, Zhang Y, Hadjipanayis GC, Fountzoulas C. CoPt and FePt nanoparticles for high density recording media. IEEE Trans Magn. 2000;36(5):2333.

    Article  CAS  Google Scholar 

  13. Sun SH, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287(5460):1989.

    Article  CAS  Google Scholar 

  14. Chou S-W, Zhu C-L, Neeleshwar S, Chen C-L, Chen Y-Y, Chen C-C. Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube. Chem Mater. 2009;21(20):49551.

    Article  Google Scholar 

  15. Colak L, Hadjipanayis GC. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology. 2009;20(48):485602.

    Article  Google Scholar 

  16. Sun SH, Anders S, Thomson T, Baglin JEE, Toney MF. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B. 2003;107(23):5419.

    Article  CAS  Google Scholar 

  17. Sun SH. Metal salt reduction to form alloy nanoparticles, US Patent 6254662, 2001.

  18. Sun SH, Murray CB. Synthesis of monodisperse nanocrystals and their assembly in magnetic superlattice (invited). J Appl Phys. 1999;85(8):4325.

    Article  CAS  Google Scholar 

  19. Yang HT, Shen CM, Su YK, Yang TZ, Gao HJ. Self-assembly and magnetic properties of cobalt nanoparticles. Appl Phys Lett. 2003;82(26):4729.

    Article  CAS  Google Scholar 

  20. Liu C, Wu XW, Klemmer T, Shukla N, Yang XM, Weller D, Roy AG, Tanase M, Laughlin D. Polyol process synthesis of monodispersed FePt nanoparticles. J Phys Chem B. 2004;108(2):6121.

    Article  CAS  Google Scholar 

  21. Tzitzios V, Niarchos D, Gjoka M, Boukos N, Petridis D. Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc. 2005;127(40):13756.

    Article  CAS  Google Scholar 

  22. Li Y, Zhang XL, Qiu R, Qiao R, Kang YS. Chemical synthesis and silica encapsulation of NiPt nanoparticles. J Phys Chem C. 2007;111(29):10747.

    Article  CAS  Google Scholar 

  23. Hou YL, Kondoh H, Kogure T, Ohta T. Preparation and characterization of monodisperse FePd nanoparticles. Chem Mater. 2004;16(24):5149.

    Article  CAS  Google Scholar 

  24. Srivastava C, Balasubramanian J, Turner CH, Wiest JM, Bagaria HG, Thompson GB. Formation mechanism and composition distribution of FePt nanoparticles. J Appl Phys. 2007;102(10):104310.

    Article  Google Scholar 

  25. Chen M, Pica T, Jiang YB, Li P, Yano K, Liu JP, Datye AK, Fan HY. Synthesis and self-assembly of fcc phase FePt nanorods. J Am Chem Soc. 2007;129(20):6348.

    Article  CAS  Google Scholar 

  26. Gao Y, Zhang XW, Yin ZG, Qu S, You JB, Chen NF. Magnetic properties of FePt nanoparticles prepared by a micellar method. Nanoscale Res Lett. 2010;5(1):1.

    Article  CAS  Google Scholar 

  27. Silva TLd, Varanda LC. Perpendicularly self-oriented and shape-controlled L10-FePt nanorods directly synthesized by a temperature-modulated process. Nano Res. 2011;4(7):666.

    Article  CAS  Google Scholar 

  28. Yan QY, Purkayastha A, Kim T, Kröger R, Bose A, Ramanath G. Synthesis and assembly of monodisperse high-coercivity silica-capped FePt nanomagnets of tunable size, composition, and thermal stability from microemulsions. Adv Mater. 2006;18(19):2569.

    Article  CAS  Google Scholar 

  29. Wang C, Hou YL, Kim J, Sun SH. A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed. 2007;46(33):6333.

    Article  CAS  Google Scholar 

  30. Liu HR, Lu QF, Han XF, Liu XG, Xu BS, Jia HS. The fabrication of CoPt nanowire and nanotube arrays by alternating magnetic field during deposition. Appl Surf Sci. 2012;258(19):7401.

    Article  CAS  Google Scholar 

  31. Cagnon L, Dahmane Y, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A. Electrodeposited CoPt and FePt alloys nanowires. J Magn Magn Mater. 2007;310(2):2428.

    Article  CAS  Google Scholar 

  32. Chu SZ, Inoue S, Wada K, Kurashima K. Fabrication and structural characteristics of nanocrystalline Fe–Pt thin films and Fe–Pt nanowire arrays embedded in alumina films on ITO/glass. J Phys Chem B. 2004;108(18):5582.

    Article  CAS  Google Scholar 

  33. Zeng H, Sun SH, Sandstrom RL, Murray CB. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater. 2003;266(1–2):227.

    Article  CAS  Google Scholar 

  34. Yano K, Nandwana V, Poudyal N, Rong CB, Liu JP. Rapid thermal annealing of FePt nanoparticles. J Appl Phys. 2008;104(1):013918.

    Article  Google Scholar 

  35. Zeng H, Sun SH, Vedantam TS, Liu JP, Dai ZR, Wang ZL. Exchange-coupled FePt nanoparticle assembly. Appl Phys Lett. 2002;80(14):2583.

    Article  CAS  Google Scholar 

  36. Vedantam TS, Liu JP, Zeng H, Sun S. Thermal stability of self-assembled FePt nanoparticles. J Appl Phys. 2003;93(10):7184.

    Article  CAS  Google Scholar 

  37. Lu LY, Wang D, Xu XG, Zhan Q, Jiang Y. Enhancement of magnetic properties for FePt nanoparticles by rapid annealing in a vacuum. J Phys Chem C. 2009;113(46):19867.

    Article  CAS  Google Scholar 

  38. Lu LY, Wang D, Xu XG, Wang HC, Miao J, Jiang Y. Low temperature magnetic hardening in self-assembled FePt/Ag core–shell nanoparticles. Mater Chem Phys. 2011;129(3):995.

    Article  CAS  Google Scholar 

  39. Kang SS, Miao GX, Shi S, Jia Z, Nikles DE, Harrell JW. Enhanced magnetic properties of self-assembled FePt nanoparticles with MnO shell. J Am Chem Soc. 2006;128(4):1042.

    Article  CAS  Google Scholar 

  40. Sung YM, Lee MK, Kim KE, Kim TG. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem Phys Lett. 2007;443(4–6):319.

    Article  CAS  Google Scholar 

  41. Yu LN, Lu LY, Xu ZD, Xu XG, Miao J, Jiang Y. Enhanced L10 phase transitionin CoPt/Ag core/shell nanoparticles. Mater Lett. 2012;86:142.

    Article  CAS  Google Scholar 

  42. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J. Beating the superparamagnetic limit with exchange bias. Nature. 2003;423(6942):850.

    Article  CAS  Google Scholar 

  43. Sort J, Nogue J, Surinach S. Coercivity and squareness enhancement in ball-milled hard magnetic–antiferromagnetic composites. Appl Phys Lett. 2001;79(8):1142.

    Article  CAS  Google Scholar 

  44. Lu LY, Xu XG, Zhang WT, Miao J, Jiang Y. Enhanced magnetic properties of cobalt nanoparticles on FeMn films. Mater Lett. 2010;64(22):2424.

    Article  CAS  Google Scholar 

  45. He SL, Zhang HW, Delikanli S, Qin YL, Swihart MT, Zeng H. Bifunctional magneto-optical FePt–CdS hybrid nanoparticles. J Phys Chem C. 2009;113(1):87.

    Article  CAS  Google Scholar 

  46. Zhou TJ, Lu MH, Zhang ZH, Gong H, Chin WS, Liu B. Synthesis and characterization of multifunctional FePt/ZnO core/shell nanoparticles. Adv Mater. 2010;22(3):403.

    Article  CAS  Google Scholar 

  47. Gu HW, Zheng RK, Zhang XX, Xu B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J Am Chem Soc. 2004;126(18):5664.

    Article  CAS  Google Scholar 

  48. Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004;4(1):187.

    Article  CAS  Google Scholar 

  49. Gao JH, Zhang B, Gao Y, Pan Y, Zhang XX, Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: a simple preparation for multifunctional nanostructures. J Am Chem Soc. 2007;129(39):11928.

    Article  CAS  Google Scholar 

  50. Chiang IC, Chen DH. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv Funct Mater. 2007;17(8):1311.

    Article  CAS  Google Scholar 

  51. Ciuculescu D, Amiens C, Respaud M, Falqui A, Lecante P, Benfield RE, Jiang L, Fauth K, Chaudret B. One-pot synthesis of core–shell FeRh nanoparticles. Chem Mater. 2007;19(19):4624.

    Article  CAS  Google Scholar 

  52. Lu LY, Zhang WT, Wang D, Xu XG, Miao J, Jiang Y. Fe@Ag core–shell nanoparticles with both sensitive plasmonic properties and tunable magnetism. Mater Lett. 2010;64(15):1732.

    Article  CAS  Google Scholar 

  53. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA. Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B. 2006;110(23):11160.

    Article  CAS  Google Scholar 

  54. Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L. Heterodimers based on CoPt3–Au nanocrystals with tunable domain size. J Am Chem Soc. 2006;128(20):6690.

    Article  CAS  Google Scholar 

  55. Byrne FN, Monzon LMA, Stamenov P, Venkatesan M, Coey JMD. Influence of an Au capping layer on the magnetic properties of CoPt nanowires. Appl Phys Lett. 2011;98(25):252507.

    Article  Google Scholar 

  56. Gu HW, Yang ZM, Gao JH, Chang CK, Xu B. Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc. 2005;127(1):34.

    Article  CAS  Google Scholar 

  57. Verdes C, Chantrell RW, Satoh A, Harrell JW, Nikles D. Self-organization, orientation and magnetic properties of FePt nanoparticles arrays. J Magn Magn Mater. 2006;304(1):27.

    Article  CAS  Google Scholar 

  58. Richter HJ, Dobin AY, heinonen O, Gao KZ, Van der Veerdonk RJM, Lynch RT, Xue J, Weller D, Asselin P, Erden MF, Brockie RM. Recording on bit-patterned media at densities of 1 Tb/in2 and beyond. IEEE Trans Magn. 2006;42(10):2255.

    Article  Google Scholar 

  59. Sun SH, Anders S, Hamann HF, Thiele JU, Baglin JEE, Thomson T, Fullerton EE, Murray CB, Terris BD. Polymer mediated self-assembly of magnetic nanoparticles. J Am Chem Soc. 2002;124(12):2884.

    Article  CAS  Google Scholar 

  60. Zafiropoulou I, Devlin E, Boukos N, Niarchos D, Petridis D, Tzitzios V. Direct chemical synthesis of L10 FePt nanostructures. Chem Mater. 2007;19(8):1898.

    Article  CAS  Google Scholar 

  61. Wellons MS, Morris WH, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem Mater. 2007;19(10):2483.

    Article  CAS  Google Scholar 

  62. Capobianchi A, Colapietro M, Fiorani D, Foglia S, Imperatori P, Laureti S, Palange E. General strategy for direct synthesis of L10 nanoparticle alloys from layered precursor: the case of FePt. Chem Mater. 2009;21(10):2007.

    Article  CAS  Google Scholar 

  63. Srinivasan B, Li YP, Jing Y, Xu YH, Yao XF, Xing CG, Wang JP. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed. 2009;48(15):2764.

    Article  CAS  Google Scholar 

  64. Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270.

    Article  CAS  Google Scholar 

  65. Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428.

    Article  CAS  Google Scholar 

  66. Chen CL, Kuo LR, Lee SY, Hwu YK, Chou SW, Chen CC, Chang FH, Lin KH, Tsai DH, Chen YY. Photothermal cancer therapy via femtosecond-laser-excited FePt nanoparticles. Biomaterials. 2013;34(4):1128.

    Article  CAS  Google Scholar 

  67. Xu CJ, Yuan ZL, Kohler N, Kim J, Chung MA, Sun SH. FePt Nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. J Am Chem Soc. 2009;131(42):15346.

    Article  CAS  Google Scholar 

  68. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111(5):3036.

    Article  CAS  Google Scholar 

  69. Chen W, Kim J, Sun SH, Chen SW. Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C. 2008;112(10):3891.

    Article  CAS  Google Scholar 

  70. Kim J, Lee YM, Sun SH. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc. 2010;132(14):4996.

    Article  CAS  Google Scholar 

  71. Du JQ, Zhang Y, Tian T, Yan SC, Wang HT. Microwave irradiation assisted rapid synthesis of Fe–Ru bimetallic nanoparticles and their catalytic properties in water-gas shift reaction. Mater Res Bull. 2009;44(6):1347.

    Article  CAS  Google Scholar 

  72. Kockrick E, Schmidt F, Gedrich K, Rose M, George TA, Freudenberg T, Kraehnert R, Skomski R, Sellmyer DJ, Kaskel S. Mesoporous ferromagnetic MPt@silica/carbon (M = Fe, Co, Ni) composites as advanced bifunctional catalysts. Chem Mater. 2010;22(5):1624.

    Article  CAS  Google Scholar 

  73. Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y. Multifunctional Co–Mo films fabricated by electrochemical deposition. Electrochim Acta. 2013;106:258.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Basic Research Program of China (No. 2012CB932702), the National Natural Science Foundation of China (Nos. 51071022, 51271020, and 11174031), the Program for Changjiang Scholars and Innovative Research Teams in University (PCSIRT), Beijing Nova Program (No. 2011031), the Fundamental Research Funds for the Central Universities, and the State Key Laboratory of Advanced Metals and Materials (No. 2011-Z03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, LY., Yu, LN., Xu, XG. et al. Monodisperse magnetic metallic nanoparticles: synthesis, performance enhancement, and advanced applications. Rare Met. 32, 323–331 (2013). https://doi.org/10.1007/s12598-013-0117-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0117-y

Keywords

Navigation