Skip to main content
Log in

Design and analysis of a 1 × 2 microstrip patch antenna array based on photonic crystals with a graphene load in THZ

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In a terahertz (THz) band, a graphene-based patch antenna is widely used due to its unique characteristics. In this paper, a high gain \(1\times 2\) microstrip patch antenna array based on periodic and non-periodic photonic crystals with a graphene load is proposed to operate in the terahertz band, which has applications in sensing, imaging and wireless communication technologies. First, the properties of graphene were analyzed by varying the chemical potential (\(\mu _{\rm{c}}\)) from 0 to 1.5 eV. Next, the performance of the proposed antenna array based on periodic photonic crystals with a graphene load is compared to the case with no graphene load. The best performance was achieved at a resonant frequency of 0.630 THz when chemical potential (\(\mu _{\rm{c}}\)) is 1.5 eV, which achieved a minimal return loss of − 73.86 dB, a bandwidth of 287 GHz, a gain of 11.11 dB and directivity of 12 dBi. In addition, we described three different enhancements to the photonic crystal substrate by designing three different antenna arrays with different air holes in square and triangular lattices. The simulation results indicated that performance improved further with non-periodic photonic crystals as found in antenna array 3 which obtained a minimal return loss of − 75.90 dB and larger bandwidth greater than 411 GHz at a resonant frequency of 0.636 THz. The achieved gain and directivity were 11.53 dB and 12.40 dBi, respectively. The simulation is performed with the aid of CST microwave studio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Russer, N. Fichtner, Nanoelectronics in radio-frequency technology. IEEE Microw. Mag. 11(3), 119–135 (2010). https://doi.org/10.1109/MMM.2010.936077

    Article  Google Scholar 

  2. K.-C. Huang, Z. Wang, Terahertz terabit wireless communication. IEEE Microw. Mag. 12(4), 108–116 (2011). https://doi.org/10.1109/MMM.2011.940596

    Article  Google Scholar 

  3. M. Biabanifard, M.S. Abrishamian, Circuit modeling of tunable terahertz graphene absorber. Optik 158, 842–849 (2018). https://doi.org/10.1016/j.ijleo.2017.12.112

    Article  ADS  Google Scholar 

  4. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). https://doi.org/10.1109/TMTT.2004.835916

    Article  ADS  Google Scholar 

  5. W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70(8), 1325 (2007). https://doi.org/10.1088/0034-4885/70/8/R02

    Article  ADS  Google Scholar 

  6. N. Surkamp, B. Döpke, Y. Hu, C. Brenner, M. Hofmann, A. Klehr, A., Knigge, G. Tränkle, Terahertz time-domain spectroscopy by asynchronous sampling with modelocked semiconductor lasers, in 2018 First International Workshop on Mobile Terahertz Systems (IWMTS) (IEEE, 2018), pp. 1–4. https://doi.org/10.1109/IWMTS.2018.8454698

  7. S.U. Hwu, K.B. de Silva, C.T. Jih, Terahertz (thz) wireless systems for space applications, in 2013 IEEE Sensors Applications Symposium Proceedings (IEEE, 2013), pp. 171–175. https://doi.org/10.1109/SAS.2013.6493580

  8. D.L. Woolard, R. Brown, M. Pepper, M. Kemp, Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc. IEEE 93(10), 1722–1743 (2005). https://doi.org/10.1109/JPROC.2005.853539

    Article  Google Scholar 

  9. S. Poorgholam-Khanjari, F.B. Zarrabi, Reconfigurable vivaldi thz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy. Opt. Commun. 480, 126482 (2021). https://doi.org/10.1016/j.optcom.2020.126482

    Article  Google Scholar 

  10. S. Galoda, G. Singh, Fighting terrorism with terahertz. IEEE Potentials 26(6), 24–29 (2007). https://doi.org/10.1109/MPOT.2007.906117

    Article  Google Scholar 

  11. D.L. Woolard, J.O. Jensen, R.J. Hwu, Terahertz Science and Technology for Military and Security Applications, vol. 46 (World Scientific, 2007)

    Google Scholar 

  12. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, 2005). https://doi.org/10.1017/CBO9780511807213

    Book  MATH  Google Scholar 

  13. M.S. Alam, M.T. Islam, N. Misran, A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement. Progress Electromag. Res. 130, 389–409 (2012). https://doi.org/10.2528/PIER12060702

    Article  Google Scholar 

  14. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals (Princeton University Press, 2011)

    Book  MATH  Google Scholar 

  15. H. Boutayeb, T.A. Denidni, Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Trans. Antennas Propag. 55(11), 3140–3145 (2007). https://doi.org/10.1109/TAP.2007.908818

    Article  ADS  Google Scholar 

  16. M.N.E. Temmar, A. Hocini, D. Khedrouche, M. Zamani, Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using bpso. J. Comput. Electron. 18(1), 231–240 (2019). https://doi.org/10.1007/s10825-019-01301-x

    Article  Google Scholar 

  17. A. Hocini, M. Temmar, D. Khedrouche, M. Zamani, Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photon. Nanostruct. Fundam. Appl. 36, 100723 (2019). https://doi.org/10.1016/j.photonics.2019.100723

    Article  Google Scholar 

  18. M.N. eddine Temmar, A. Hocini, D. Khedrouche, T.A. Denidni, Enhanced flexible terahertz microstrip antenna based on modified silicon-air photonic crystal. Optik 217, 164897 (2020)

    Article  ADS  Google Scholar 

  19. K.R. Jha, G. Singh, Terahertz Planar Antennas for Next Generation Communication (Springer, 2014)

    Book  Google Scholar 

  20. R.K. Kushwaha, P. Karuppanan, L. Malviya, Design and analysis of novel microstrip patch antenna on photonic crystal in thz. Physica B 545, 107–112 (2018). https://doi.org/10.1016/j.physb.2018.05.045

    Article  ADS  Google Scholar 

  21. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, M.I. Katsnelson, L. Eaves, S.V. Morozov, A.S. Mayorov, N.M. Peres et al., Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12(3), 1707–1710 (2012). https://doi.org/10.1021/nl3002205

    Article  ADS  Google Scholar 

  22. I. Llatser, C. Kremers, A. Cabellos-Aparicio, J.M. Jornet, E. Alarcón, D.N. Chigrin, Graphene-based nano-patch antenna for terahertz radiation. Photon. Nanostruct. Fundam. Appl. 10(4), 353–358 (2012). https://doi.org/10.1016/j.photonics.2012.05.011

    Article  ADS  Google Scholar 

  23. I.F. Akyildiz, J.M. Jornet, Electromagnetic wireless nanosensor networks. Nano Commun. Networks 1(1), 3–19 (2010). https://doi.org/10.1016/j.nancom.2010.04.001

    Article  Google Scholar 

  24. G. Naumis, M. Terrones, H. Terrones, L.M. Gaggero-Sager, Design of graphene electronic devices using nanoribbons of different widths. Appl. Phys. Lett. 95(18), 182104 (2009). https://doi.org/10.1063/1.3257731

    Article  ADS  Google Scholar 

  25. D. Schall, D. Neumaier, M. Mohsin, B. Chmielak, J. Bolten, C. Porschatis, A. Prinzen, C. Matheisen, W. Kuebart, B. Junginger et al., 50 gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photon. 1(9), 781–784 (2014). https://doi.org/10.1021/ph5001605

    Article  Google Scholar 

  26. B. Sensale-Rodriguez, T. Fang, R. Yan, M. Kelly, D. Jena, L. Liu, H. Xing, Unique prospects for graphene-based terahertz modulators appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3636435

    Article  Google Scholar 

  27. J. Wang, W.-B. Lu, Z.-G. Liu, A.-Q. Zhang, H. Chen, Graphene-based microwave antennas with reconfigurable pattern. IEEE Trans. Antennas Propag. 68(4), 2504–2510 (2019). https://doi.org/10.1109/TAP.2019.2952239

    Article  ADS  Google Scholar 

  28. M. Grande, G.V. Bianco, D. Laneve, P. Capezzuto, V. Petruzzelli, M. Scalora, F. Prudenzano, G. Bruno, A. D’Orazio, Gain and phase control in a graphene-loaded reconfigurable antenna. Appl. Phys. Lett. 115(13), 133103 (2019). https://doi.org/10.1063/1.5111868

    Article  ADS  Google Scholar 

  29. M.Z. Chowdhury, M. Shahjalal, S. Ahmed, Y.M. Jang, 6g wireless communication systems: applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 1, 957–975 (2020). https://doi.org/10.1109/OJCOMS.2020.3010270

    Article  Google Scholar 

  30. M.A.K. Khan, T.A. Shaem, M.A. Alim, Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik 194, 163012 (2019). https://doi.org/10.1016/j.ijleo.2019.163012

    Article  ADS  Google Scholar 

  31. M.A.K. Khan, T.A. Shaem, M.A. Alim, Graphene patch antennas with different substrate shapes and materials. Optik 202, 163700 (2020). https://doi.org/10.1016/j.ijleo.2019.163700

    Article  ADS  Google Scholar 

  32. R. Bala, A. Marwaha, Characterization of graphene for performance enhancement of patch antenna in thz region. Optik 127(4), 2089–2093 (2016). https://doi.org/10.1016/j.ijleo.2015.11.029

    Article  ADS  Google Scholar 

  33. S.A. Naghdehforushha, G. Moradi, High directivity plasmonic graphene-based patch array antennas with tunable thz band communications. Optik 168, 440–445 (2018). https://doi.org/10.1016/j.ijleo.2018.04.104

    Article  ADS  Google Scholar 

  34. M.N.E. Temmar, A. Hocini, D. Khedrouche, T.A. Denidni, Analysis and design of mimo indoor communication system using terahertz patch antenna based on photonic crystal with graphene. Photon. Nanostruct. Fundam. Appl. 43, 100867 (2021). https://doi.org/10.1016/j.photonics.2020.100867

    Article  Google Scholar 

  35. J. Ren, G. Wang, W. Qiu, Z. Lin, H. Chen, P. Qiu, J.-X. Wang, Q. Kan, J.-Q. Pan, Optimization of the fano resonance lineshape based on graphene plasmonic hexamer in mid-infrared frequencies. Nanomaterials 7(9), 238 (2017)

    Article  Google Scholar 

  36. G.-W. Cheng, K. Chu, J.S. Chen, J.T. Tsai, Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system. Superlattices Microstruct. 104, 258–265 (2017). https://doi.org/10.1016/j.spmi.2017.02.040

    Article  ADS  Google Scholar 

  37. R. Aloui, Z. Houaneb, H. Zairi, Substrate integrated waveguide circular antenna for terahertz application. Progress Electromag. Res. C 96, 229–242 (2019). https://doi.org/10.2528/PIERC19080607

    Article  Google Scholar 

  38. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N.E. Temmar, T.A. Denidni, Design and analysis of mimo system for thz communication using terahertz patch antenna array based on photonic crystals with graphene. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-04081-0

    Article  Google Scholar 

  39. W. Kemp, Organic Spectroscopy (Bloomsbury Publishing, 2017)

    Google Scholar 

  40. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N.E. Temmar, T.A. Denidni, Design and analysis of a 2 × 2 microstrip ratch antenna array based on periodic and non-periodic photonic crystals substrate in thz. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-03563-5

    Article  Google Scholar 

  41. A. Singh, S. Singh, A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed thz applications. Photon. Nanostruct. Fundam. Appl. 14, 52–62 (2015). https://doi.org/10.1016/j.photonics.2015.01.003

    Article  ADS  Google Scholar 

  42. M.E. Benlakehal, A. Hocini, D. Khedrouche, T.A. Denidni et al., Design and analysis of novel microstrip patch antenna array based on photonic crystal in thz. Opt. Quant. Electron. 54(5), 1–16 (2022). https://doi.org/10.1007/s11082-022-03701-z

    Article  Google Scholar 

  43. S.M. Razavizadeh, Simulation of graphene in cst microwave v2015 and comsol multiphysics 5.2 a, IRIB Univ., Tehran, Iran, Technical Report (2017)

  44. S.H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, S.-J. Park, Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography. Nanotechnology 18(5), 055306 (2007). https://doi.org/10.1088/0957-4484/18/5/055306

    Article  ADS  Google Scholar 

  45. S.M. Palhade, S. Yawale, Design and photo-lithographic fabrication of microstrip patch antenna. Int. J. Sci. Res. 4(2), 2021 (2015)

    Google Scholar 

  46. M.E. Benlakehal, A. Hocini, D. Khedrouche, M.N.E. Temmar, T.A. Denidni, Design and analysis of a 1 × 2 microstrip patch antenna array based on periodic and aperiodic photonic crystals in terahertz. Opt. Quant. Electron. (2022). https://doi.org/10.1007/s11082-022-03701-z

    Article  Google Scholar 

  47. Y.D. Sirmaci, C.K. Akin, C. Sabah, Fishnet based metamaterial loaded thz patch antenna. Opt. Quant. Electron. 48(2), 1–10 (2016). https://doi.org/10.1007/s11082-016-0449-6

    Article  Google Scholar 

  48. E.C. Britto, S.K. Danasegaran, W. Johnson, Design of slotted patch antenna based on photonic crystal for wireless communication. Int. J. Commun Syst 34(1), e4662 (2021). https://doi.org/10.1002/dac.4662

    Article  Google Scholar 

  49. F. Wen, S. David, X. Checoury, M. El Kurdi, P. Boucaud, Two-dimensional photonic crystals with large complete photonic band gaps in both te and tm polarizations. Opt. Express 16(16), 12278–12289 (2008). https://doi.org/10.1364/OE.16.012278

    Article  ADS  Google Scholar 

  50. R. Wang, X.-H. Wang, B.-Y. Gu, G.-Z. Yang, Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals. J. Appl. Phys. 90(9), 4307–4313 (2001). https://doi.org/10.1063/1.1406965

    Article  ADS  Google Scholar 

  51. M. Younssi, A. Jaoujal, M.D. Yaccoub, A. El Moussaoui, N. Aknin, Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2(4), 369–371 (2013)

    Google Scholar 

  52. G. Singh, Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010). https://doi.org/10.1016/j.infrared.2009.08.002

    Article  ADS  Google Scholar 

  53. M. Singh, S. Singh, M.T. Islam, Highly efficient ultra-wide band mimo patch antenna array for short range thz applications, in Emerging Trends in Terahertz Engineering and System Technologies. (Springer, 2021), pp. 193–207. https://doi.org/10.1007/978-981-15-9766-4

  54. R.K. Kushwaha, P. Karuppanan, Y. Srivastava, Proximity feed multiband patch antenna array with SRR and PBG for THZ applications. Optik 175, 78–86 (2018). https://doi.org/10.1016/j.ijleo.2018.08.139

    Article  ADS  Google Scholar 

  55. A. Azarbar, M. Masouleh, A. Behbahani, A new terahertz microstrip rectangular patch array antenna. Int. J. Electromag. Appl. 4(1), 25–29 (2014). https://doi.org/10.5923/j.ijea.20140401.03

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Algerian Ministry of Higher Education and Scientific Research through funding for PRFU Project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elamine Benlakehal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benlakehal, M.E., Hocini, A., Khedrouche, D. et al. Design and analysis of a 1 × 2 microstrip patch antenna array based on photonic crystals with a graphene load in THZ. J Opt 52, 483–493 (2023). https://doi.org/10.1007/s12596-022-01006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01006-8

Keywords

Navigation