Skip to main content

Advertisement

Log in

Source parameters of the 2001 Mw 7.7 Bhuj earthquake, Gujarat, India, aftershock sequence

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

We present the estimated source parameters from SH-wave spectral modeling of selected 463 aftershocks (2002–06) of the 26 January 2001 Bhuj earthquake, the well-recorded largest continental intraplate earthquake. The estimated seismic moment (Mo), corner frequency (fc), source radius (r) and stress drop (Δσ) for aftershocks of moment magnitude 1.7 to 5.6 range from 3.55×1011 to 2.84×1017 N-m, 1.3 to 11.83 Hz, 107 to 1515 m and 0.13 to 26.7 MPa, respectively, while the errors in fc and Δσ are found to be 1.1 Hz and 1.1 MPa, respectively. We also notice that the near surface attenuation factor (k) values vary from 0.02 to 0.03. Our estimates reveal that the stress drop values show more scatter (Mo0.5 to 1 is proportional to Δσ) toward the larger Mo values (≥1014.5 N-m), while they show a more systematic nature (Mo3 is proportional to Δσ) for smaller Mo values (<1014.5 N-m), which can be explained as a consequence of a nearly constant rupture radius for smaller aftershocks in the region. The large stress drops (= 10 MPa) associated with events on the north Wagad fault (at 15–30 km depth) and Gedi fault (at 3–15 km depth) can be attributed to the large stress developed at hypocentral depths as a result of high fluid pressure and the presence of mafic intrusive bodies beneath these two fault zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie, R. and Leary, P. (1993) Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, Southern California: Implications for earthquake scaling. Geophys. Res. Lett., v.20, pp.1511–1514.

    Article  Google Scholar 

  • Abercrombie, R.E. (1995) Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2–5 km depth. Jour. Geophys. Res., v.100, pp.24015–24036.

    Article  Google Scholar 

  • Aki, K., 1967. Scaling law of seismic spectrum, J. Geophys. Res., v.72, pp.1217–1231.

    Article  Google Scholar 

  • Aki, K. (1972) Earthquake mechanism, Tectonophysics v.13, pp.423–446.

    Article  Google Scholar 

  • Anderson, J.G. and Hough, S.E., 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seism. Soc. Amer., v.74, pp.1969–1994.

    Google Scholar 

  • Anderson, J.G. (1986) Implication of attenuation for studies of the earthquake source. In: M. Ewing (Ed.), Earthquake Source Mechanics. Amer. Geophys. Union, Geophysical Monograph 37, v.6, pp.311–317.

    Article  Google Scholar 

  • Antolik, M. and Dreger, D.S. (2003) Rupture process of the 26 January 2001 Mw 7.6 Bhuj, India, earthquake from teleseismic broadband data. Bull. Seism. Soc. Amer., v.93, pp.1235–1248.

    Google Scholar 

  • Archuleta, R.J., Cranswick, E., Muellar, C. and Spudich, P. (1982) Source parameters of the 1980 Mammoth Lakes, California, Earthquake sequence. Jour. Geophys. Res., v.87(B6), pp.4595–4607.

    Article  Google Scholar 

  • Baumbach, M. et al. (1994) Study of foreshocks and aftershocks of the Intraplate earthquake of September 30, 1993, India, Latur Earthquake. Mem. Geol. Soc. India, no.35, pp.33–66.

    Google Scholar 

  • Biswas, S.K. (1987) Regional framework, structure and evolution of the western marginal basins of India. Tectonophysics, v.135, pp.302–327.

    Article  Google Scholar 

  • Boatwright, J. (1984) Seismic estimates of stress release. Jour. Geophys. Res., v.89, pp.6961–6968.

    Article  Google Scholar 

  • Bodin, P. and Horton, S. (2004) Source parameters and tectonic implications of aftershocks of the Mw 7.6 Bhuj earthquake of January 26, 2001. Bull. Seism. Soc. Amer., v.94, pp.818–827.

    Google Scholar 

  • Bodin, P., Malagnini, L. and Akinci, A. (2004) Ground motion scaling in the Kachchh Basin, India, deduced from aftershocks of the 2001 Mw 7.6 Bhuj earthquake. Bull. Seism. Soc. Amer., v.94, pp.1658–1669.

    Google Scholar 

  • Brune, J. (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. Jour. Geophys. Res., v.75, pp.4997–5009.

    Article  Google Scholar 

  • Chandrasekhar, D.V. and Mishra, D.C. (2002) Some geodynamic aspects of Kutch basin and seismicity: An insight from gravity studies. Curr. Sci., v.83, pp.492–498.

    Google Scholar 

  • Chung, W.Y. and Gao, H. (1995) Source Parameters of the Anjar earthquake of July 21, 1956, India and its seismtectonic implications for the Kutch rift basin. Tectonophysics, v.242, pp.281–292.

    Article  Google Scholar 

  • Dieterich, J.H. (1986) A model for the nucleation of earthquake slip. Amer. Geophys. Mono., v.37, pp.311–318.

    Google Scholar 

  • Washington, Dc. Eshelby, J.D. (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Royal. Soc., A241, pp.376–396.

    Article  Google Scholar 

  • Fletcher, J.B., Boatwright, J., Harr, L., Hanks, T. and Macgarr, A. (1984) Source parameters for aftershocks of the Oroville, California, earthquake. Bull. Seism. Soc. Amer. v.74, pp.1101–1123.

    Google Scholar 

  • Gupta, H.K., Harinarayana, T., Kousalya, M., Mishra, D.C., Mohan, I., Purnachandra Rao, N., Raju, P.S., Rastogi, B.K., Reddy, P.R. and Sarkar, Dipankar, (2001) Bhuj earthquake of 26 January 2001. Jour. Geol. Soc. India, v.57, pp.275–278.

    Google Scholar 

  • Hanks, T.C. and Kanamori, H. (1979) A moment magnitude scale, Jou. Geophys. Res., v.84(B5), pp.2348–2350.

    Article  Google Scholar 

  • Harr, L.C., Fletcher, J.B. and Mueller, C.S. (1984) The 1982 Enola, Arkansas, swarm and scaling of ground motion in the eastern United States. Bull. Seism. Soc. Amer. v.74, pp.2463–2482.

    Google Scholar 

  • Hasegawa, H.S. (1983) Lg Spectra of local earthquakes recorded by the Eastern Canada Telemetered Network and spectral scaling. Bull. Seism. Soc. Amer., v.75, pp.1569–1581.

    Google Scholar 

  • Havskov, J. and Ottemoller, L. (2003) SEISAN: The earthquake analysis software, mannual, pp.208.

    Google Scholar 

  • Hough, S.E. (1996) Observational constrains on earthquake source scaling: understanding the limits in resolution, Tectonophysics, v.261, pp.83–95.

    Article  Google Scholar 

  • Hough, S.E. (1997) Empirical Green’s function analysis: taking the next step. Jour. Geophys. Res., v.102, pp.5369–5384.

    Article  Google Scholar 

  • Johnston, A.C. (1994) Seismotectonic interpretations and conclusions from the stable continental regions. In: the earthquakes of Stable Continental Regions: Assessment of Large Earthquake Potential, Electric Power & Research Institute, Palo Alto, Report TR 10261 ch.3.

    Google Scholar 

  • Kaila, K.L., Tewari, H.C. and Sarma, P.L.N. (1981) Crustal Structure from deep seismic sounding studies along Navibandar — Amreli profile in Saurashtra, India. In: Deccan Volcanism and related basalt provinces in other parts of the world. Mem. Geol. Soc. India, no.3, pp.218–232.

    Google Scholar 

  • Kanamori, H. and Allen, C.R. (1986) Earthquake repeat times and average stress drop, Earthquake source mechanics. Geophysical Monograph (AGU) 37, pp.227–236.

    Google Scholar 

  • Kanamori, H. and Anderson, D.L., 1975. Theoretical bases for some empirical relations in Seismology, Bull. Seism. Soc. Amer., v.65, pp.1073–1095.

    Google Scholar 

  • Keilis-borok, V. (1959) On estimation of the displacement in an earthquake source and of source dimension. Ann. Geofis., v.12, pp.205–214.

    Google Scholar 

  • Kissling, E. (1995) Velest Users Guide, Internal report. Institute of Geophysics, ETH Zurich, pp.26.

    Google Scholar 

  • Lee, W.H.K. and Valdes, C.M. (1985) HYPO71PC: A personal computer version of the HYPO71 earthquake location program. U.S. Geol. Surv. Open File Report 85-749, 43p.

    Google Scholar 

  • Madriaga, R. (1976) Dynamics of an expanding circular fault. Bull. Seism. Soc. Amer., v.66, pp.639–666.

    Google Scholar 

  • Mandal, P., Rastogi, B. K., Satyanarayana, H. V. S., Kousalya, M, Vijayraghavan, R, Satyamurthy, C., Raju, I.. P., Sarma, A.N.S. and Kumar, N. (2004a) Characterization of the causative fault system for the 2001 Bhuj earthquake of Mw 7.7, Tectonophysics, v.378, pp.105–121.

    Article  Google Scholar 

  • Mandal, Prantik, Rastogi, B.K., Satyanarayana, H.V.S. and Kousalya, M. (2004b) Results from Local Earthquake Velocity Tomography: Implications toward the Source Process Involved in Generating the 2001 Bhuj Earthquake in the Lower Crust beneath Kachchh (India). Bull. Seism. Soc. Amer., v.94(2), pp.633–649.

    Google Scholar 

  • Mandal, P. (2006a) Sedimentary and crustal structure beneath Kachchh and Saurashtra regions, Gujarat, India, Physics Earth Planet. Interiors, v.155, pp.286–299.

    Google Scholar 

  • Mandal, P. (2007) Sediment Thicknesses and Qs vs. Qp relations in the Kachchh rift basin, Gujarat, India using Sp converted phases, Pure Appl. Geophysics, v.164, 135–160.

    Article  Google Scholar 

  • Mandal, P., Narsaiah, R., Sairam, B., Satyamurty, C. and Raju, I.P., (2006a) Relocation of early and late aftershocks of 2001 Bhuj earthquake using Joint Hypocentral Determination (JHD) technique: Implication toward the continued aftershock activity for more than four years. Pure and Appl. Geophysics, v.163, pp.1561–1581.

    Article  Google Scholar 

  • Mandal, P. and Pujol, J. (2006) Seismic imaging of the Aftershock zone of the 2001 Mw7.7 Bhuj earthquake, India. Geophys. Res. Lett., v.33, L05309, 1–4.

    Article  Google Scholar 

  • Mandal, P., Horton, S. and Pujol, J. (2006b) Relocation, Vp and Vp/Vs tomography, focal mechanisms and other related studies using aftershock data of the Mw 7.7 Bhuj earthquake of January 26, 2001. Jour. Indian Geophys. Union v.10, pp.31–44.

    Google Scholar 

  • Mandal, P., Srivastava, J., Joshi, S., Kumar, S., Bhunia, R. and Rastogi, B.K. (2004c) Low coda-Qc in the epicentral region of the 2001 Bhuj Earthquake of Mw 7.7, Pure and Appl. Geophys., v.161, pp.1635–1654.

    Article  Google Scholar 

  • Mandal, P. and Johnston, A. (2006) Estimation of source parameters for the aftershocks of the 2001 Mw 7.7 Bhuj earthquake, India. Pure and Appl. Geophysics, v.163, pp.1537–1560.

    Article  Google Scholar 

  • Mandal, P., Rastogi, B.K. and Sarma, C.S.P. (1998) Source parameters of Koyna Earthquakes, India. Bull. Seism. Soc. Amer., v.88(3), pp.833–842.

    Google Scholar 

  • Mayeda, K. and Walter, W.R. (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. Jour. Geophys. Res., v.101, pp.11,195–11,208.

    Article  Google Scholar 

  • Mccalpin, J.P. and Thakkar, M.G. (2003) 2001 Bhuj-Kachchh earthquake: surface faulting and its relation with neotectonics and regional structures, Gujarat, Western India, In: D. Pantoshi, K. Berrymann, R. Yeats and Y. Kinugasa, (Eds.), Ten years of Paleoseismology in the ILP, progress and prospects. Annals of Geophys., v.46(5), pp.937–956.

    Google Scholar 

  • Mcguire, R.K. (1985) Ground motion estimation, in seismic hazard methodology for nuclear facilities in the eastern United States. EPRI project: No. P101-29, 6-1–6-20.

    Google Scholar 

  • Mishra, D.C., Chandrasekhar, D.V. and Singh, B. (2005) Tectonics and crustal structures related to Bhuj earthquake of January 26, 2001: based on gravity and magnetic surveys constrained from seismic and seismological studies, Tectonophysics, v.396, pp.195–207.

    Article  Google Scholar 

  • Negishi, H., Mori, J., Sato, H., Singh, R.P. and Kumar, S. (2001) Aftershocks and slip distribution of Mainshock, A comprehensive survey of the 26 January 2001 earthquake (Mw 7.7) in the state of Gujarat, India, Research Report on Natural Disasters, December 2001, pp.33–45.

    Google Scholar 

  • Pearson, C. (1982) Parameters and a magnitude moment relationship for small earthquakes observed during hydraulic fracturing experiments in crystalline rocks. Geophys. Res. Lett., v.9, pp.404–407.

    Article  Google Scholar 

  • Rajendran, C.P. and Rajendran, K. (2001) Character of deformation and past seismicity associated with the 1819 Kachchh earthquake, northwestern India. Bull. Seismol. Soc. Amer., v.91(3), pp.407–426.

    Article  Google Scholar 

  • Rastogi, B.K., Gupta, H.K., Mandal, P., Satnarayana, H.V.S., Kousalya, M., Raghavan, R., Jain, R., Sarma, A.N.S., Kumar, N. and Satyamurty, C. (2001) The deadliest stable continental region earthquake occurred near Bhuj on 26 January 2001. Jour. Seismology, v.5, pp.609–615.

    Article  Google Scholar 

  • Rautian, T.G. and Khalturin, V.I. (1978) The use of the coda for determination of the earthquake source spectrum. Bull. Seism. Soc. Amer., v.68, pp.923–948.

    Google Scholar 

  • Reddy, P.R., Sarkar, D., Sain, K. and Mooney, W.D. (2001) Report on collaborative scientific study at USGS, Menlo Park, USA (30 October–31 December, 2001), pp.19.

    Google Scholar 

  • Ruina, A.L. (1983) Slip instability and state variable friction laws. Jour. Geophys. Res., v.88, pp.10359–10370.

    Article  Google Scholar 

  • Scholz, C.H., Aviles, C. and Wesnousky, S., 1986. Scaling differences between large intraplate and interplate earthquakes. Bull. Seism. Soc. Amer., v.76, pp.65–70.

    Google Scholar 

  • Scholz, C.H. (1988) The critical distance for seismic faulting. Nature, v.336, pp.761–763.

    Article  Google Scholar 

  • Scholz, C.H. (1990) The Mechanics of Earthquakes and Faulting. Cambridge Univ. Press, 441p.

    Google Scholar 

  • Shi, J., Kim, Won-young and Richards, P.G. (1998) The corner frequencies and stress drops of intraplate earthquakes in the northeastern United States. Bull. Seism. Soc. Amer. v.88(2), pp.531–542.

    Google Scholar 

  • Sibson, R.H. (1974) Frictional constraints on thrust, wrench and normal faults. Nature, v.249, pp.542–544.

    Article  Google Scholar 

  • Singh, S.K., Dattatrayam, R.S., Shapiro, N.M., Mandal, P., Pacheco, J.F. and Midha, R.K. (1999) Crustal and Upper Mantle structure of Peninsular India and Source Parameters of the May 21, 1997, Jabalpur Earthquake (Mw=5.8): Results from a New Regional Broad-band Network. Bull. Seism. Soc. Amer. v.89, pp.1632–1641.

    Google Scholar 

  • Singh, S.K., Pacheco, J.F., Bansal, B.K., Perez-campos, X., Dattatrayam, R.S. and Suresh, G. (2004) A source study of the Bhuj, India. Earthquake of 26 January 2001 (Mw7.6), Bull. Seism. Soc. Amer. v.94, pp.1195–1206.

    Google Scholar 

  • Singh, S.K., Aspel, R.J., Fried, J. and Brune, J.N. (1982) Spectral attenuation of SH waves along the Imperial fault. Bull. Seism. Soc. Amer., v.72, pp.2003–2016.

    Google Scholar 

  • Taylor, J.R. (1997) An introduction to error analysis (2nd ed.), University Science Books.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsaiah Rapolu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapolu, N., Mandal, P. Source parameters of the 2001 Mw 7.7 Bhuj earthquake, Gujarat, India, aftershock sequence. J Geol Soc India 83, 517–531 (2014). https://doi.org/10.1007/s12594-014-0079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0079-1

Keywords

Navigation