Skip to main content
Log in

Estimation and Identifiability of Parameters for Generalized Lotka-Volterra Biological Systems Using Adaptive Controlled Combination Difference Anti-Synchronization

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This manuscript systematically describes a procedure to investigate the combination difference anti-synchronization scheme among three identical chaotic generalized Lotka-Volterra biological systems. Initially, an adaptive parameter identification control method has been proposed which is based on the Lyapunov stability analysis. In addition, the biological adaptive control law for achieving global asymptotic stability of state variables of the considered system with unknown parameters has been derived. Numerical simulations have been thereafter presented for ensuring the effectivity and correctness of the considered technique using MATLAB. Remarkably, the obtained analytical results agree excellently with the computational results. The proposed approach has enormous applications in the area of image encryption and secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arneodo, Alain, Coullet, Pierre, Tresser, Charles: Occurence of strange attractors in three-dimensional volterra equations. Phys. Lett. A 79(4), 259–263 (1980)

    MathSciNet  Google Scholar 

  2. Samardzija, Nikola, Greller, Larry D.: Explosive route to chaos through a fractal torus in a generalized lotka-volterra model. Bull. Math. Biol. 50(5), 465–491 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Pecora, Louis M., Carroll, Thomas L.: Synchronization in chaotic systems. Phys. Rev Lett. 64(8), 821 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Shinbrot, Troy, Ott, Edward, Grebogi, Celso, Yorke, James A.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65(26), 3215 (1990)

    Google Scholar 

  5. Singh, Ajit K, Yadav, Vijay K, Das, S.: Synchronization between fractional order complex chaotic systems. Int. J. Dyn. Control 5(3), 756–770 (2017)

    MathSciNet  Google Scholar 

  6. Li, Guo-Hui, Zhou, Shi-Ping: Anti-synchronization in different chaotic systems. Chaos Solitons Fractals 32(2), 516–520 (2007)

    Google Scholar 

  7. Sebastian, K., Sabir, M.: Hybrid synchronization of hyperchaotic lu system. Pramana 73(4), 781 (2009)

    Google Scholar 

  8. Xu, Z., Guo, L., Hu, M., Yang, Y.: Hybrid projective synchronization in a chaotic complex nonlinear system. Math. Comput. Simul. 79(1), 449–457 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Zhou, Ping, Zhu, Wei: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal. Real World Appl. 12(2), 811–816 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Li, Chuandong, Liao, Xiaofeng: Complete and lag synchronization of hyperchaotic systems using small impulses. Chaos Solitons Fractals 22(4), 857–867 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Ma, Jun, Mi, Lv, Zhou, Ping, Ying, Xu, Hayat, Tasawar: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Ding, Zhixia, Shen, Yi: Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw. 76, 97–105 (2016)

    MATH  Google Scholar 

  13. Li, Guo-Hui: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32(5), 1786–1790 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Delavari, Hadi, Mohadeszadeh, Milad: Hybrid complex projective synchronization of complex chaotic systems using active control technique with nonlinearity in the control input. J. Control Eng. Appl. Inf. 20(1), 67–74 (2018)

    Google Scholar 

  15. Ayub Khan and Muzaffar Ahmad Bhat: Hyper-chaotic analysis and adaptive multi-switching synchronization of a novel asymmetric non-linear dynamical system. Int. J. Dyn. Control 5(4), 1211–1221 (2017)

    MathSciNet  Google Scholar 

  16. Rasappan, S, Vaidyanathan S: Synchronization of hyperchaotic liu system via backstepping control with recursive feedback. In: International conference on eco-friendly computing and communication systems, pp. 212–221. Springer, (2012)

  17. Chen, Maoyin, Han, Zhengzhi: Controlling and synchronizing chaotic genesio system via nonlinear feedback control. Chaos Solitons Fractals 17(4), 709–716 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Vaidyanathan, Sundarapandian, Sampath, Sivaperumal: Anti-synchronization of four-wing chaotic systems via sliding mode control. Int. J. Autom. Comput. 9(3), 274–279 (2012)

    Google Scholar 

  19. Li, Dong, Zhang, Xingpeng: Impulsive synchronization of fractional order chaotic systems with time-delay. Neurocomputing 216, 39–44 (2016)

    Google Scholar 

  20. Lorenz, Edward N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Provata, A., Katsaloulis, P., Verganelakis, D.A.: Dynamics of chaotic maps for modelling the multifractal spectrum of human brain diffusion tensor images. Chaos Solitons Fractals 45(2), 174–180 (2012)

    Google Scholar 

  22. Patle, B.K., Parhi, D.R.K., Jagadeesh, Anne, Kashyap, Sunil Kumar: Matrix-binary codes based genetic algorithm for path planning of mobile robot. Comput. Electr. Eng. 67, 708–728 (2018)

    Google Scholar 

  23. Tong, Xiao-Jun, Zhang, Miao, Wang, Zhu, Liu, Yang, Ma, Jing: An image encryption scheme based on a new hyperchaotic finance system. Optik 126(20), 2445–2452 (2015)

    Google Scholar 

  24. Bouallegue, Kais: A new class of neural networks and its applications. Neurocomputing 249, 28–47 (2017)

    Google Scholar 

  25. Russell, Francis P., Düben, Peter D., Niu, Xinyu, Luk, Wayne, Palmer, Tim N.: Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures. Comput. Phys. Commun. 221, 160–173 (2017)

    MathSciNet  Google Scholar 

  26. Sahoo, Banshidhar, Poria, Swarup: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58, 52–64 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Ghosh, Dia, Mukherjee, Arindum, Das, Nikhil Ranjan, Biswas, Baidya Nath: Generation & control of chaos in a single loop optoelectronic oscillator. Optik 165, 275–287 (2018)

    Google Scholar 

  28. Han, Seung Kee, Kurrer, Christian, Kuramoto, Yoshiki: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75(17), 3190 (1995)

    Google Scholar 

  29. Shi, Zhiguo, Hong, Shaohua, Chen, Kangsheng: Experimental study on tracking the state of analog chua’s circuit with particle filter for chaos synchronization. Phys. Lett. A 372(34), 5575–5580 (2008)

    Google Scholar 

  30. Wang, Xiong, Vaidyanathan, Sundarapandian, Volos, Christos, Pham, Viet-Thanh, Kapitaniak, Tomasz: Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. 89(3), 1673–1687 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Guo-Cheng, Wu, Baleanu, Dumitru, Lin, Zhen-Xiang: Image encryption technique based on fractional chaotic time series. J. Vib. Control 22(8), 2092–2099 (2016)

    MathSciNet  Google Scholar 

  32. Hubler, A.W.: Adaptive control of chaotic system. Helv. Phys. Acta 62, 343–346 (1989)

    Google Scholar 

  33. Liao, Teh-Lu, Tsai, Shin-Hwa: Adaptive synchronization of chaotic systems and its application to secure communications. Chaos Solitons Fractals 11(9), 1387–1396 (2000)

    MATH  Google Scholar 

  34. Yassen, M.T.: Adaptive control and synchronization of a modified chua’s circuit system. Appl. Math. Comput. 135(1), 113–128 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Li, Zhigang, Daolin, Xu: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2), 477–481 (2004)

    MATH  Google Scholar 

  36. Li, Shih-Yu., Yang, Cheng-Hsiung, Lin, Chin-Teng, Ko, Li-Wei, Chiu, Tien-Ting: Adaptive synchronization of chaotic systems with unknown parameters via new backstepping strategy. Nonlinear Dyn. 70(3), 2129–2143 (2012)

    MathSciNet  Google Scholar 

  37. Zhaoyan, Wu, Duan, Jinqiao, Xinchu, Fu: Complex projective synchronization in coupled chaotic complex dynamical systems. Nonlinear Dyn. 69(3), 771–779 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Vaidyanathan, Sundarapandian: Hybrid synchronization of the generalized lotka-volterra three-species biological systems via adaptive control. Int. J. Pharm. Tech. Res. 9(1), 179–192 (2016)

    Google Scholar 

  39. Vaidyanathan, Sundarapandian: Adaptive biological control of generalized lotka-volterra three-species biological system. Int. J. Pharm. Tech. Res. 8(4), 622–631 (2015)

    Google Scholar 

  40. Khan, A., Bhat, M.A.: Hyperchaotic analysis and adaptive projective synchronization of nonlinear dynamical system. Comput. Math. Model. 28(4), 517–530 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Khan, Ayub, Tyagi, Arti: Hybrid projective synchronization between two identical new 4-d hyper-chaotic systems via active control method. Int. J. Nonlinear Sci 23(3), 142–150 (2017)

    Google Scholar 

  42. Khan, Ayub, Tyagi, Arti: Analysis and hyper-chaos control of a new 4-d hyper-chaotic system by using optimal and adaptive control design. Int. J. Dyn. Control 5(4), 1147–1155 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harindri Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.I. : Computational Modeling and Simulations: Real World Applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T., Chaudhary, H. Estimation and Identifiability of Parameters for Generalized Lotka-Volterra Biological Systems Using Adaptive Controlled Combination Difference Anti-Synchronization. Differ Equ Dyn Syst 28, 515–526 (2020). https://doi.org/10.1007/s12591-020-00534-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-020-00534-8

Keywords

Navigation