Skip to main content
Log in

Relationship between landslides and active normal faulting in the epicentral area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China)

  • Hydrogeology and Geo-hazards
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M~8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models (DEMs), in combination with field survey, demonstrate that: (i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches; (ii) the landslides are mostly developed upon steep slopes of ≥30°; and (iii) the step-like normalfault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfaro, P., Delgado, J., García-Tortosa, F. J., et al., 2012. Widespread Landslides Induced by the Mw 5.1 Earthquake of 11 May 2011 in Lorca, SESpain. Engineering Geology, 137/138: 40–52. doi:10.1016/j.enggeo.2012.04.002

    Article  Google Scholar 

  • Barnard, P. L., Owen, L. A., Sharma, M. C., et al., 2001. Natural and Human-Induced Landsliding in the Garhwal Himalaya of Northern India. Geomorphology, 40(1/2): 21–35. doi:10.1016/s0169-555x(01)00035-6

    Article  Google Scholar 

  • Carbonel, D., Gutiérrez, F., Linares, R., et al., 2013. Chain, N Spain). Geomorphology, 189: 93–108. doi:10.1016/j.geomorph.2013.01.020

    Article  Google Scholar 

  • Chigira, M., Wu, X. Y., Inokuchi, T., et al., 2010. Landslides Induced by the 2008 Wenchuan Earthquake, Sichuan, China. Geomorphology, 118(3/4): 225–238. doi:10.1016/j.geomorph.2010.01.003

    Article  Google Scholar 

  • Chuang, S. C., Chen, H., Lin, G. W., et al., 2009. Increase in Basin Sediment Yield from Landslides in Storms Following Major Seismic Disturbance. Engineering Geology, 103(1/2): 59–65. doi:10.1016/j.enggeo.2008.08.001

    Article  Google Scholar 

  • CENC (China Earthquakes Network Center), 2007. The 1556 Huaxian Great Earthquake, Shaanxi, China: The Largest Total of Fatalities ever Claimed. [2016-03-15]. http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b000 01/_history/hxz/qyzhenhai/zh20060609002.htm (in Chinese)

  • Close, U., McCormick, E., 1922. Where the Mountains Walked. The National Geographic Magazine, 41: 445–472

    Google Scholar 

  • Dadson, S. J., Hovius, N., Chen, H., et al., 2004. Earthquake-Triggered Increase in Sediment Delivery from an Active Mountain Belt. Geology, 32(8): 733. doi:10.1130/g20639.1

    Article  Google Scholar 

  • Dai, F. C., Xu, C., Yao, X., et al., 2011a. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895. doi:10.1016/j.jseaes.2010.04.010

    Article  Google Scholar 

  • Dai, F. C., Tu, X. B., Xu, C., et al., 2011b. Rock Avalanches Triggered by Oblique-Thrusting during the 12 May 2008 Ms 8.0 Wenchuan Earthquake, China. Geomorphology, 132(3/4): 300–318. doi:10.1016/j.geomorph.2011.05.016

    Article  Google Scholar 

  • Das, J. D., Saraf, A. K., Panda, S., 2007. Satellite Data in a Rapid Analysis of Kashmir Earthquake (October 2005) Triggered Landslide Pattern and River Water Turbidity in and around the Epicentral Region. International Journal of Remote Sensing, 28(8): 1835–1842. doi:10.1080/01431160600954720

    Article  Google Scholar 

  • Deng, Q., 2007. Active Tectonics Map of China. Seismological Press, Beijing (in Chinese)

  • Deng, Q., Zhang, P., Ran, Y., et al., 2003. Basic Characteristics of Active Tectonics of China. Science in China Series D: Earth Sciences, 46: 356–372.

    Google Scholar 

  • Densmore, A. L., Ellis, M. A., Anderson, R. S., 1998. Landsliding and the Evolution of Normal-Fault-Bounded Mountains. Journal of Geophysical Research: Solid Earth, 103(B7): 15203–15219. doi:10.1029/98jb00510

    Article  Google Scholar 

  • Derbyshire, E., 2001. Geological Hazards in Loess Terrain, with Particular Reference to the Loess Regions of China. Earth-Science Reviews, 54(1/2/3): 231–260. doi:10.1016/s0012-8252(01)00050-2

    Article  Google Scholar 

  • Digital Globe Inc., 2016. Content Collection/Satellites. [2016-03-15]. http://www.digitalglobe.com/about-us/content-collection#worldview-1

  • Du, J., Li, D., Ma, Y., et al., 2013. The High-Speed and Long-Distance Ancient Landslides before 187 ka: the Evidence from the OSL Dating of the Loess Overlying the Landslide Body of Lianhuasi Landslides in Huaxian, Shaanxi Province, China. Quaternary Sciences, 33: 1005–1015 (in Chinese with English Abstract)

    Google Scholar 

  • Feng, X. J., Dai, W. Q., 2004. Lateral Migration of Fault Activity in Weihe Basin. Acta Seismologica Sinica, 17(2): 190–199. doi:10.1007/bf02896933

    Article  Google Scholar 

  • Fujisawa, K., Marcato, G., Nomura, Y., et al., 2010. Management of a Typhoon-Induced Landslide in Otomura (Japan). Geomorphology, 124(3/4): 150–156. doi:10.1016/j.geomorph.2010.09.027

    Article  Google Scholar 

  • Gori, S., Falcucci, E., Dramis, F., et al., 2014. Deep-Seated Gravitational Slope Deformation, Large-Scale Rock Failure, and Active Normal Faulting along Mt. Morrone (Sulmona Basin, Central Italy): Geomorphological and Paleoseismological Analyses. Geomorphology, 208: 88–101. doi:10.1016/j.geomorph.2013.11.017

    Google Scholar 

  • Gorum, T., Korup, O., van Westen, C. J., et al., 2014. Why so Few? Landslides Triggered by the 2002 Denali Earthquake, Alaska. Quaternary Science Reviews, 95: 80–94. doi:10.1016/j.quascirev.2014.04.032

    Article  Google Scholar 

  • Harp, E. L., Jibson, R. W., 1996. Landslides Triggered by the 1994 Northridge, California, Earthquake. Bulletin of Seismological Society of American, 86: 319–332

    Google Scholar 

  • Has, B., Noro, T., Maruyama, K., et al., 2012. Characteristics of Earthquake-Induced Landslides in a Heavy Snowfall Region—Landslides Triggered by the Northern Nagano Prefecture Earthquake, March 12, 2011, Japan. Landslides, 9(4): 539–546. doi:10.1007/s10346-012-0344-6

    Article  Google Scholar 

  • He, M., 1986. The Great 1556 Huaxian Earthquake and the Related Faulting. Journal Seismological Research, 9: 427–432 (in Chinese with English Abstract)

    Google Scholar 

  • Highland, L. M., Bobrowsky, P., 2008. The Landslide Handbook—A Guide to Understanding Landslides. U.S. Geological Survey Circular, 1325: 129

    Google Scholar 

  • Huang, R., Chan, L., 2004. Human-Induced Landslides in China: Mechanism Study and Its Implications on Slope Management. Chinese Journal of Rock Mechanics and Engineering, 23: 2766–2777

    Google Scholar 

  • Jibson, R. W., 2009. Using Landslides for Paleoseismic Analysis. In: McCalpin, J. P., ed., Paleoseismology. International Geophysical Series,95: 565–601

    Article  Google Scholar 

  • Jibson, R. W., Harp, E. L., Schulz, W., et al., 2004. Landslides Triggered by the 2002 Denali Fault, Alaska, Earthquake and the Inferred Nature of the Strong Shaking. Earthquake Spectra, 20(3): 669–691. doi:10.1193/1.1778173

    Article  Google Scholar 

  • Jibson, R. W., Keefer, D. K., 1993. Analysis of the Seismic Origin of Landslides: Examples from the New Madrid Seismic Zone. Geological Society of America Bulletin, 105(4): 521–536. doi:10.1130/0016- 7606(1993)105<0521:aotsoo>2.3.co;2

    Article  Google Scholar 

  • Jibson, R. W., Keefer, D. K., 1989. Statistical Analysis of Factors Affecting Landslide Distribution in the New Madrid Seismic Zone, Tennessee and Kentucky. Engineering Geology, 27(1/2/3/4): 509–542. doi:10.1016/0013-7952(89)90044-6

    Article  Google Scholar 

  • Keefer, D. K., 2000. Statistical Analysis of an Earthquake-Induced Landslide Distribution—The 1989 Loma Prieta, California Event. Engineering Geology, 58(3/4): 231–249. doi:10.1016/s0013-7952(00)00037-5

    Article  Google Scholar 

  • Keefer, D. K., 1994. The Importance of Earthquake-Induced Landslides to Long-Term Slope Erosion and Slope-Failure Hazards in Seismically Active Regions. Geomorphology, 10(1/2/3/4): 265–284. doi:10.1016/0169-555x(94)90021-3

    Article  Google Scholar 

  • Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95: 406–421

    Article  Google Scholar 

  • Korup, O., 2004. Geomorphic Implications of Fault Zone Weakening: Slope Instability along the Alpine Fault, South Westland to Fiordland. New Zealand Journal of Geology and Geophysics, 47(2): 257–267. doi:10.1080/00288306.2004.9515052

    Article  Google Scholar 

  • Kuo, T., 1957. On the Shensi Earthquake of January 23, 1556. Acta Geophysica Sinica, 6: 59–68 (in Chinese with English Abstract)

    Google Scholar 

  • Lenti, L., Martino, S., 2012. The Interaction of Seismic Waves with Step-Like Slopes and Its Influence on Landslide Movements. Engineering Geology, 126: 19–36. doi:10.1016/j.enggeo.2011.12.002

    Article  Google Scholar 

  • Li, Z., Cui, P., 2007. The Secondary Disasters of Great Huaxian Earthquake in 1556. Journal of Mountain Sciences, 25: 425–430 (in Chinese with English Abstract)

    Google Scholar 

  • Li, X., Ran, Y., 1983. Active Faults at Northern Front of the Huashan and Weinan Loess Tableland. North China Earthquake Science, 1: 10–18 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, J. H., Zhang, P. Z., Lease, R. O., et al., 2013. Eocene Onset and Late Miocene Acceleration of Cenozoic Intracontinental Extension in the North Qinling Range-Weihe Graben: Insights from Apatite Fission Track Thermochronology. Tectonophysics, 584: 281–296. doi:10.1016/j.tecto.2012.01.025

    Article  Google Scholar 

  • Meng, Q. R., Zhang, G. W., 2000. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 323(3/4): 183–196. doi:10.1016/s0040-1951(00)00106-2

    Article  Google Scholar 

  • Meunier, P., Hovius, N., Haines, J. A., 2008. Topographic Site Effects and the Location of Earthquake Induced Landslides. Earth and Planetary Science Letters, 275(3/4): 221–232. doi:10.1016/j.epsl.2008.07.020

    Article  Google Scholar 

  • Meunier, P., Hovius, N., Haines, A. J., 2007. Regional Patterns of Earthquake-Triggered Landslides and Their Relation to Ground Motion. Geophysical Research Letters, 34(20): L20408. doi:10.1029/2007gl031337

    Article  Google Scholar 

  • Moro, M., Saroli, M., Gori, S., et al., 2012. The Interaction between Active Normal Faulting and Large Scale Gravitational Mass Movements Revealed by Paleoseismological Techniques: A Case Study from Central Italy. Geomorphology, 151/152: 164–174. doi:10.1016/j.geomorph.2012.01.026

    Article  Google Scholar 

  • Osmundsen, P. T., Henderson, I., Lauknes, T. R., et al., 2009. Active Normal Fault Control on Landscape and Rock-Slope Failure in Northern Norway. Geology, 37(2): 135–138. doi:10.1130/g25208a.1

    Article  Google Scholar 

  • Owen, L. A., Kamp, U., Khattak, G. A., et al., 2008. Landslides Triggered by the 8 October 2005 Kashmir Earthquake. Geomorphology, 94(1/2): 1–9. doi:10.1016/j.geomorph.2007.04.007

    Article  Google Scholar 

  • Rao, G., Lin, A. M., Yan, B., 2015. Paleoseismic Study on Active Normal Faults in the Southeastern Weihe Graben, Central China. Journal of Asian Earth Sciences, 114: 212–225. doi:10.13039/501100001700

    Article  Google Scholar 

  • Rao, G., Lin, A. M., Yan, B., et al., 2014. Tectonic Activity and Structural Features of Active Intracontinental Normal Faults in the Weihe Graben, Central China. Tectonophysics, 636: 270–285. doi:10.13039/501100001700

    Article  Google Scholar 

  • Ratschbacher, L., Hacker, B. R., Calvert, A., et al., 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 366(1/2): 1–53. doi:10.1016/s0040-1951(03)00053-2

    Article  Google Scholar 

  • Ren, Z. K., Zhang, Z. Q., Dai, F. C., et al., 2014a. Topographic Changes Due to the 2008 Mw 7.9 Wenchuan Earthquake as Revealed by the Differential DEM Method. Geomorphology, 217: 122–130. doi:10.1016/j.geomorph.2014.04.020

    Article  Google Scholar 

  • Ren, Z. K., Zhang, Z. Q., Yin, J. H., et al., 2014b. Morphogenic Uncertainties of the 2008 Wenchuan Earthquake: Generating or Reducing?. Journal of Earth Science, 25(4): 668–675. doi:10.1007/s12583-014-0456-0

    Article  Google Scholar 

  • Ren, Z. K., Zhang, Z. Q., Dai, F. C., et al., 2013. Co-Seismic Landslide Topographic Analysis Based on Multi-Temporal DEM—A Case Study of the Wenchuan Earthquake. Springer Plus, 2(1): 544. doi:10.1186/2193-1801-2-544

    Article  Google Scholar 

  • Ren, Z. K., Lin, A. M., 2010. Co-Seismic Landslides Induced by the 2008 Wenchuan Magnitude 8.0 Earthquake, as Revealed by ALOS PRISM and AVNIR2 Imagery Data. International Journal of Remote Sensing, 31(13): 3479–3493. doi:10.1080/01431161003727770

    Article  Google Scholar 

  • Shaanxi Earthquake Information Network (SEIN), 2011. Historical Earthquakes in Shaanxi Province. [2016-03-15]. http://www.eqsn.gov.cn/manage/html/8abd83af1c88b3f2011c88b74299 001f/sxlsdz/index.html (in Chinese)

  • Sepúlveda, S. A., Murphy, W., Jibson, R. W., et al., 2005. Seismically Induced Rock Slope Failures Resulting from Topographic Amplification of Strong Ground Motions: The Case of Pacoima Canyon, California. Engineering Geology, 80(3/4): 336–348. doi:10.1016/j.enggeo.2005.07.004

    Article  Google Scholar 

  • Solonenko, V. P., 1977. Landslides and Collapses in Seismic Zones and Their Prediction. Bulletin of the International Association of Engineering Geology, 15(1): 4–8. doi:10.1007/bf02592633

    Article  Google Scholar 

  • State Seismological Bureau (SSB), 1988. Active Faults around the Ordos. Seismological Press, Beijing. 335 (in Chinese)

    Google Scholar 

  • Tian, Y. Y., Xu, C., Xu, X. W., et al., 2016. Detailed Inventory Mapping and Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. Journal of Earth Science, 27(6): 1016–1026. doi:10.1007/s12583-016-0905-z

    Article  Google Scholar 

  • Tsou, C. Y., Feng, Z. Y., Chigira, M., 2011. Catastrophic Landslide Induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127(3/4): 166–178. doi:10.1016/j.geomorph.2010.12.013

    Article  Google Scholar 

  • Wang, W. N., Nakamura, H., Tsuchiya, S., et al., 2002. Distributions of Landslides Triggered by the Chi-Chi Earthquake in Central Taiwan on September 21, 1999. Landslides, 38(4): 318–326. doi:10.3313/jls1964.38.4_318

    Article  Google Scholar 

  • Xie, Y., 1992. On Magnitude of 1556 Guanzhong Great Earthquake. Journal of Catastrophology, 7: 10–13 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, C., Xu, X. W., Tian, Y. Y., et al., 2016. Two Comparable Earthquakes Produced Greatly Different Coseismic Landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China Events. Journal of Earth Science, 27(6): 1008–1015. doi:10.1007/s12583-016-0684-6

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Yu, G. H., 2013. Landslides Triggered by Slipping-Fault-Generated Earthquake on a Plateau: An Example of the 14 April 2010, Ms 7.1, Yushu, China Earthquake. Landslides, 10(4): 421–431. doi:10.1007/s10346-012-0340-x

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Shyu, J. B. H., 2015. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013. Geomorphology, 248: 77–92. doi:10.1016/j.geomorph.2015.07.002

    Article  Google Scholar 

  • Xu, C., Xu, X. W., 2014. Statistical Analysis of Landslides Caused by the Mw 6.9 Yushu, China, Earthquake of April 14, 2010. Natural Hazards, 72(2): 871–893. doi:10.1007/s11069-014-1038-2

    Article  Google Scholar 

  • Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. doi:10.1007/s10346-013-0404-6

    Article  Google Scholar 

  • Xu, X., Zhang, H., Deng, Q., 1988. The Paleoearthquake Traces on Huashan Front Fault Zone in Weihe Basin and Its Earthquake Intervals. Seismology and Geology, 10: 206 (in Chinese with English Abstract)

    Google Scholar 

  • Yin, G. M., Lu, Y. C., Zhao, H., et al., 2001. The Tectonic Uplift of the Hua Shan in the Cenozoic. Chinese Science Bulletin, 46(19): 1665–1668. doi:10.1007/bf02900632

    Article  Google Scholar 

  • Yuan, T., Feng, X., 2010. The 1556 Huaxian Great Earthquake. Seismological Press, Beijing. 386 (in Chinese)

    Google Scholar 

  • Zhang, D. X., Wang, G. H., 2007. Study of the 1920 Haiyuan Earthquake-Induced Landslides in Loess (China). Engineering Geology, 94(1/2): 76–88. doi:10.1016/j.enggeo.2007.07.007

    Article  Google Scholar 

  • Zhang, Y. Q., Mercier, J. L., Vergé ly, P., 1998. Extension in the Graben Systems around the Ordos (China), and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia. Tectonophysics, 285(1/2): 41–75. doi:10.1016/s0040-1951(97)00170-4

    Google Scholar 

  • Zhang, A. L., Yang, Z. T., Zhong, J., et al., 1995. Characteristics of Late Quaternary Activity along the Southern Border Fault Zone of Weihe Graben Basin. Quaternary International, 25: 25–31. doi:10.1016/1040-6182(94)p3715-k

    Article  Google Scholar 

  • Zhou, Q., 2010. Ancient Landslide at the Pediment of the Qinling Mountains near Lianhuasi, Hua County, Shaanxi Province. Journal of Shaanxi Institute of Education, 26: 86–99 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dong Jia, Dr. Maomao Wang and Dr. Xiaojun Wu for their field assistance and helpful discussion on an early draft. We also thank the reviewers and editors for the constructive suggestions which greatly improved the manuscript. This study was supported by the National Natural Science Foundation of China (No. 41502203), the Scientific Research Foundation for Returned Overseas Scholars of China (awarded to G. Rao), the Natural Science Foundation of Zhejiang Province (No. LY15D02001), and a Science Project (No. 23253002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0900-z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Rao.

Additional information

http://orcid.org/0000-0003-3094-0311

Rao, G., Cheng, Y. L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545-554. doi:10.1007/s12583-017-0900-z. http://en.earth-science.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G., Cheng, Y., Lin, A. et al. Relationship between landslides and active normal faulting in the epicentral area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). J. Earth Sci. 28, 545–554 (2017). https://doi.org/10.1007/s12583-017-0900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0900-z

Key words

Navigation