Skip to main content
Log in

Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Pore structure characteristics of rock are a great concern for researchers and practitioners in rock mechanics and rock engineering fields. In this study, mercury intrusion porosimetry (MIP) was used to measure pore size distribution, as well as several important index parameters of pore structure, for seven common types of deep sedimentary rocks with a total of fifty rock samples. Results show a similar pore size distribution pattern of the rock samples in the same lithological group, but remarkable differences among different lithological groups. Among seven investigated rock types, mudstone has the smallest porosity of 3.37%, while conglomerate has the largest value of 18.8%. It is also found that the porosity of rock types with finer grain size is lower than those with coarser grain size. Meanwhile, a comparison of frequency distribution at ten intervals of pore-throat diameter among seven types of sedimentary rocks reveals that different rock types have different dominant pore-size ranges. Furthermore, permeability of the investigated sedimentary rock samples was derived based on MIP data using reported theoretical equations. Among seven rock types, mudstone has the lowest averaged permeability (3.64×10-6 mD) while conglomerate has the highest one (8.59×10-4 mD). From mudstone to conglomerate, rock permeability increases with an increase of grain size, with only an exception of siltstone which has a relatively larger porosity value. Finally, regression analysis show that there is a good fitting (R 2=0.95) between permeability and porosity which could be easily used to derive reliable permeability values of similar kinds of engineering rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Al-Harthi, A. A., Al-Amri, R. M., Shehata, W. M., 1999. The Porosity and Engineering Properties of Vesicular Basalt in Saudi Arabia. Engineering Geology, 54(3/4): 313–320. doi:10.1016/s0013-7952(99)00050-2

    Article  Google Scholar 

  • Clavaud, J. B., Maineult, A., Zamora, M., et al., 2008. Permeability Anisotropy and Its Relations with Porous Medium Structure. Journal of Geophysical Research, 113(B1): B01202. doi:10.1029/2007jb005004

    Article  Google Scholar 

  • Di Benedetto, C., Cappelletti, P., Favaro, M., et al., 2015. Porosity as Key Factor in the Durability of Two Historical Building Stones: Neapolitan Yellow Tuff and Vicenza Stone. Engineering Geology, 193: 310–319. doi:10.1016/j.enggeo.2015.05.006

    Article  Google Scholar 

  • Dong, T., Harris, N. B., Ayranci, K., et al., 2015. Porosity Characteristics of the Devonian Horn River Shale, Canada: Insights from Lithofacies Classification and Shale Composition. International Journal of Coal Geology, 141/142: 74–90. doi:10.1016/j.coal.2015.03.001

    Article  Google Scholar 

  • Erguler, Z. A., Ulusay, R., 2009. Water-Induced Variations in Mechanical Properties of Clay-Bearing Rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2): 355–370. doi:10.1016/j.ijrmms.2008.07.002

    Article  Google Scholar 

  • Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. doi:10.1088/1742-2132/10/2/025014

    Article  Google Scholar 

  • Giesche, H., 2006. Mercury Porosimetry: A General (Practical) Overview. Particle & Particle Systems Characterization, 23(1): 9–19. doi:10.1002/ppsc.200601009

    Article  Google Scholar 

  • Hartmann, D. J., Beaumont, E. A., 2000. Predicting Reservoir System Quality and Performance. In: Beaumont, E. A., Foster, N. H., eds., Exploring for Oil and Gas Traps: AAPG Treatise of Petroleum Geology. Handbook of Petroleum Geology. 9-1–9-154

    Google Scholar 

  • Hudyma, N., Avar, B. B., Karakouzian, M., 2004. Compressive Strength and Failure Modes of Lithophysae-Rich Topopah Spring Tuff Specimens and Analog Models Containing Cavities. Engineering Geology, 73(1/2): 179–190. doi:10.1016/j.enggeo.2004.01.003

    Article  Google Scholar 

  • Katz, A. J., Thompson, A. H., 1986. Quantitative Prediction of Permeability in Porous Rock. Physical Review B, 34(11): 8179–8181. doi:10.1103/physrevb.34.8179

    Article  Google Scholar 

  • Katz, A. J., Thompson, A. H., 1987. Prediction of Rock Electrical Conductivity from Mercury Injection Measurements. Journal of Geophysical Research: Solid Earth, 92(B1): 599–607. doi:10.1029/jb092ib01p00599

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. doi:10.1306/08171111061

    Article  Google Scholar 

  • Rezaee, M. R., Jafari, A., Kazemzadeh, E., 2006. Relationships between Permeability, Porosity and Pore Throat Size in Carbonate Rocks Using Regression Analysis and Neural Networks. Journal of Geophysics and Engineering, 3(4): 370–376. doi:10.1088/1742-2132/3/4/008

    Article  Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. doi:10.1016/j.marpetgeo.2008.06.004

    Article  Google Scholar 

  • Sabatakakis, N., Koukis, G., Tsiambaos, G., et al., 2008. Index Properties and Strength Variation Controlled by Microstructure for Sedimentary Rocks. Engineering Geology, 97(1/2): 80–90. doi:10.1016/j.enggeo.2007.12.004

    Article  Google Scholar 

  • Siitari-Kauppi, M., Lindberg, A., Hellmuth, K. H., et al., 1997. The Effect of Microscale Pore Structure on Matrix Diffusion—A Site-Specific Study on Tonalite. Journal of Contaminant Hydrology, 26(1–4): 147–158. doi:10.1016/s0169-7722(97)00011-9

    Article  Google Scholar 

  • Swanson, S. M., Mastalerz, M. D., Engle, M. A., et al., 2015. Pore Characteristics of Wilcox Group Coal, U.S. Gulf Coast Region: Implications for the Occurrence of Coalbed Gas. International Journal of Coal Geology, 139: 80–94. doi:10.1016/j.coal.2014.07.012

    Google Scholar 

  • Török, Á., Vásárhelyi, B., 2010. The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Engineering Geology, 115(3/4): 237–245. doi:10.1016/j.enggeo.2010.01.005

    Article  Google Scholar 

  • Yilmaz, I., 2010. Influence of Water Content on the Strength and Deformability of Gypsum. International Journal of Rock Mechanics and Mining Sciences, 47(2): 342–347. doi:10.1016/j.ijrmms.2009.09.002

    Article  Google Scholar 

  • Zhang, N., He, M. C., Liu, P. Y., 2012. Water Vapor Sorption and its Mechanical Effect on Clay-Bearing Conglomerate Selected from China. Engineering Geology, 141/142: 1–8. doi:10.1016/j.enggeo.2012.04.007

    Article  Google Scholar 

  • Zhang, N., Liu, L. B., Hou, D. W., et al., 2014. Geomechanical and Water Vapor Absorption Characteristics of Clay-Bearing Soft Rocks at Great Depth. International Journal of Mining Science and Technology, 24(6): 811–818. doi:10.1016/j.ijmst.2014.10.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinhong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., He, M., Zhang, B. et al. Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry. J. Earth Sci. 27, 670–676 (2016). https://doi.org/10.1007/s12583-016-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0662-z

Key Words

Navigation